Advertisement

RNA In Situ Hybridizations on Drosophila Whole Mounts

  • Corinna Wülbeck
  • Charlotte Helfrich-Förster
Part of the Methods in Molecular Biology™ book series (MIMB, volume 362)

Abstract

RNA in situ hybridization is a commonly used technique to achieve spatiotemporal detection of transcripts in tissues. This chapter gives an overview of novel techniques using fluorescent dyes, signal amplification methods, and confocal microscopy in regard to chronobiological applications on Drosophila adult brains.

Key Words

Transcript DIG-UTP hapten Drosophila riboprobe RNA in situ hybridization whole mounts fixation alkaline phosphatase horseradish peroxidase Dig-POD primary antibody secondary antibody fluorescence signal amplification 

References

  1. 1.
    Tautz, D., and Pfeifle, C. (1989) A non radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals a translational control of the segmentation gene hunchback. Chromosoma 98, 81–85.CrossRefPubMedGoogle Scholar
  2. 2.
    Lehmann, R., and Tautz, D. (1994) In situ hybridization to RNA. In: Methods in Cell Biology (Goldstein, L. S. B. and Fyrberg, E. A., eds.). San Diego, CA, Academic Press, pp. 575–598.Google Scholar
  3. 3.
    Hauptmann, G., and Gerster, T. (1994) Two color whole mount in situ hybridization to vertebrates and Drosophila embryos. Trends Genet. 10, 266.CrossRefPubMedGoogle Scholar
  4. 4.
    Cohen, B., and. Cohen, S. M. (1992) Double labelling of mRNA and proteins in Drosophila embryos. In: Nonradioactive Labelling and Detection of Biomolecules (Kessler, C., ed.), Springer-Verlag, Berlin/Heidelberg, pp. 382–392.Google Scholar
  5. 5.
    Pattatucci, A., and Kaufman, T. (1992) Antibody staining of imaginal discs. DIS 71, 147.Google Scholar
  6. 6.
    Wülbeck, C., and Simpson, P. (2000) Expression of achaete-scute homologues in discrete proneural clusters of the developing notum of the medfly Ceratitis capitata suggests a common origin for the stereotyped bristle pattern of higher Diptera. Development 127, 1411–1420.PubMedGoogle Scholar
  7. 7.
    Wülbeck, C., and Simpson, P. (2002) The expression of pannier and achaetescute homologues in a mosquito suggests an ancient role of pannier as a selector gene in the regulation of the dorsal body pattern. Development 169, 3861–3871.Google Scholar
  8. 8.
    Hughes, S. C., and Krause, H. M. (1998) Single and double FISH protocols for Drosophila. In: Confocal Microscopy. Methods and Protocols (Paddock, S. W., ed.). Humana, Totowa, NJ, pp. 93–101.Google Scholar
  9. 9.
    Nagaso, H., Murara, T., Day, N., and Yokoyama, K. K. (2001) Simultaneous detection of RNA and protein by in situ hybridization and immunological staining. J. Histochem. Cytochem. 49, 1177–1182.PubMedGoogle Scholar
  10. 10.
    O’Neill, J. W., and Bier, E. (1994) Double-label in situ hybridization using biotin and digoxigenin tagged RNA probes. Biotechniques 17, 870–875.Google Scholar
  11. 11.
    Wilkie, G. S., and Davies, I. (1998) Visualizing mRNA by in situ hybridization using high resolution and sensitive tyramide signal amplification. Technical Tips Online, T01458.Google Scholar
  12. 12.
    Denkers, N., Garcia-Villalba, P., Rodesch, C. K., Nielson, K. R., and Mauch, T.J. (2004) FISHing for chick genes: triple-label whole-mount fluorescence in situ hybridization detects simultaneous and overlapping gene expression in avian embryos. Dev. Dyn. 229, 651–657.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Corinna Wülbeck
    • 1
  • Charlotte Helfrich-Förster
    • 1
  1. 1.Institut für ZoologieUniversität RegensburgRegensburgGermany

Personalised recommendations