Advertisement

Monitoring and Analyzing Drosophila Circadian Locomotor Activity

  • Mauro A. Zordan
  • Clara Benna
  • Gabriella Mazzotta
Part of the Methods in Molecular Biology™ book series (MIMB, volume 362)

Abstract

In the 1970s, the intriguing discovery of autonomous circadian rhythmicity at the behavioral level in Drosophila set the starting point for one of the most remarkably rapid advancements in the understanding of the genetic and molecular bases of a complex behavioral trait. To this end, the design of appropriate electronic devices, apt to continuously monitor behavioral activity, has proven to be fundamental to such progress. In particular, most of the mutational screens performed to date in the search for genes involved in circadian rhythmicity were based on monitoring Drosophila mutants for alterations in the circadian pattern of locomotor activity. Many different experimental paradigms, based on the use of circadian locomotor activity monitors, have been developed. Experiments can be designed to determine (1) the natural period, (2) the capacity to adapt to day-night cycles with photoperiods of differing length, and (3) the phase of the circadian activity cycles with respect to the entraining stimulus. Here we describe some of the rationale and the steps required to set up experiments to monitor circadian locomotor activity in Drosophila. Suggestions for the statistical analysis of the data obtained in such experiments are also provided.

Key Words

Drosophila locomotor activity circadian rhythms spectral analysis CLEAN Python open source actograms period phase infrared emitter 

References

  1. 1.
    Konopka, R. J., and Benzer, S. (1971) Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68,, 2112–2116.CrossRefPubMedGoogle Scholar
  2. 2.
    Martin, J-R., Ernst, R., and Heisenberg, M. (1999) Temporal pattern of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. 184, 73–84.CrossRefGoogle Scholar
  3. 3.
    Martin, J-R. (2003) Locomotor activity: a complex behavioural trait to unravel. Behavioural Processes 24, 145–160.CrossRefGoogle Scholar
  4. 4.
    Shaw, P. J., Cirelli, C., Greenspan, R., and Tononi, G. (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837.CrossRefPubMedGoogle Scholar
  5. 5.
    Sehgal, A., Price, J. L., Man, B., and Young, M.W. (1994) Loss of circadian behavioural rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603–1606.CrossRefPubMedGoogle Scholar
  6. 6.
    Yang, Z., and Sehgal, A. (2001) Role of molecular oscillations in generating behavioural rhythms in Drosophila. Neuron 29, 453–467.CrossRefPubMedGoogle Scholar
  7. 7.
    Emery, P., So, W. V., Kaneko, M., Hall, J. C., and Rosbash, M. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679.CrossRefPubMedGoogle Scholar
  8. 8.
    Hamblen, M. J., White, N. E., Emery, P. T., Kaiser, K., and Hall, J. C. (1998) Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics 149, 165–178.PubMedGoogle Scholar
  9. 9.
    Allada, R., White, N. E., So, W. V., Hall, J. C., and Rosbash, M. (1998) A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804.CrossRefPubMedGoogle Scholar
  10. 10.
    Ashburner, M. (1989) Drosophila. A Laboratory Handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  11. 11.
    Roberts, D. B. (1998) Drosophila: A Practical Approach (2nd Ed.). The practical approach series (Hames, B. D., series ed.). Oxford University Press, Oxford, UK.Google Scholar
  12. 12.
    Helfrich-Forster, C. (2000) Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster—sex-specific differences suggest a different quality of activity. J. Biol. Rhythms 15, 135–154.CrossRefPubMedGoogle Scholar
  13. 13.
    Gatti, S., Ferveur, J-F., and Martin, J-R. (2000) Genetic identification of neurons controlling a sexually dimorphic behaviour. Curr. Biol. 10, 667–670.CrossRefPubMedGoogle Scholar
  14. 14.
    Sawyer, L. A., Hennessy, J. M., Peixoto, A. A., et al. (1997) Natural variation in a Drosophila clock gene and temperature compensation. Science 278, 2117–21120.CrossRefPubMedGoogle Scholar
  15. 15.
    Rensing, L., Mohsenzadeh, S., Ruoff, P., and Meyer, U. (1997) Temperature compensation of the circadian period length—a special case among general homeostatic mechanisms of gene expression? Chronobiol. Int. 14, 481–498.CrossRefPubMedGoogle Scholar
  16. 16.
    Majercak, J., Sidote, D., Hardin, P. E., and Edery, I. (1999) How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219–230.CrossRefPubMedGoogle Scholar
  17. 17.
    Zordan, M. A., Osterwalder, N., Rosato, E., and Costa, R. (2001) Evidence for extraocular and red light-mediated photic entrainment in Drosophila melanogaster. J. Neurogenet. 15, 1–20.CrossRefGoogle Scholar
  18. 18.
    Zordan, M. A., Rosato, E., Piccin, A., and Foster, R. (2001) Photic entrainment of the circadian clock: from Drosophila to mammals. Semin. Cell Devel. Biol. 12, 317–328.CrossRefGoogle Scholar
  19. 19.
    Johnson, C. H., Elliott, J. A., and Foster, R. (2003) Entrainment of circadian programs. Chronobiol. Int. 20, 741–774.CrossRefPubMedGoogle Scholar
  20. 20.
    Ryer, A. D. (1996) Light Measurement Handbook [On-line.] Available at http://www.intl-light.com/customer/handbook/. Last accessed: June 12, 2006.
  21. 21.
    Robert, D. H., Lehar, J., and Dreher, J. W. (1987) Time series analysis with CLEAN. I. Derivation of spectra. Astron. J. 93, 968–989.CrossRefGoogle Scholar
  22. 22.
    Negi, J. G., Tiwari, R. K., and Rao, K. N. N. (1996) Clean periodicity in secular variations of dolomite abundance in deep marine sediments. Marine Geology 133, 113–121.CrossRefGoogle Scholar
  23. 23.
    Taylor, F. J. (1994) Principles of Signals and Systems. McGraw-Hill, Singapore.Google Scholar
  24. 24.
    Levine, J. D., Funes, P., Dowse, H. B., and Hall, J. C. (2002) Signal analysis of behavioural and molecular cycles. BMC Neuroscience 3, 1.CrossRefPubMedGoogle Scholar
  25. 25.
    R Development Core Team. (2003) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3, http://www.r-project.org. Las accessed: June 12, 2006.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Mauro A. Zordan
    • 1
  • Clara Benna
    • 1
  • Gabriella Mazzotta
    • 1
  1. 1.Dipartimento di BiologiaUniversità di PadovaPadovaItaly

Personalised recommendations