Use of Firefly Luciferase Activity Assays to Monitor Circadian Molecular Rhythms In Vivo and In Vitro

  • Wangjie Yu
  • Paul E. Hardin
Part of the Methods in Molecular Biology™ book series (MIMB, volume 362)


Circadian rhythms in metabolic, physiological, and behavioral processes are regulated by biological clocks. Many of these rhythmic processes can be measured over many days or weeks using automated recording devices, thus making it possible to precisely calculate period, phase, and amplitude values. With the advent of luciferase reporter genes and machines capable of quantifying luciferase-generated bioluminescence over long time frames, it is now possible to precisely monitor the rhythms in gene expression that underlie circadian clock function. These assays can be used to monitor gene expression in large numbers of individual plants and animals, and/or various cultured tissues and cells. After acquiring bioluminescence data, rhythm analysis programs are used to calculate the period, phase, amplitude, and overall levels of gene expression for individuals or groups, and to measure their statistical significance. Here we will describe how luciferase assays are performed and analyzed to measure gene expression rhythms in Drosophila.

Key Words

Circadian rhythm biological clock luciferase reporter period timeless bioluminescence gene expression Drosophila cultured tissues 


  1. 1.
    Eskin, A. (1979) Identification and physiology of circadian pacemakers. Introduction. Fed. Proc. 38, 2570–2572.PubMedGoogle Scholar
  2. 2.
    Plautz, J. D., Straume, M., Stanewsky, R., et al. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217.CrossRefPubMedGoogle Scholar
  3. 3.
    Kay, S. A. (1993) Shedding light on clock controlled cab gene transcription in higher plants. Semin. Cell Biol. 4, 81–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Millar, A. J., Short, S. R., Chua, N. H., and Kay, S. A. (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4, 1075–1087.CrossRefPubMedGoogle Scholar
  5. 5.
    Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N. H., and Kay, S. A. (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163.CrossRefPubMedGoogle Scholar
  6. 6.
    Kondo, T., Strayer, C. A., Kulkarni, R. D., et al. (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. USA 90, 5672–5676.CrossRefPubMedGoogle Scholar
  7. 7.
    Brandes, C., Plautz, J. D., Stanewsky, R., et al. (1996) Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16, 687–692.CrossRefPubMedGoogle Scholar
  8. 8.
    Yamaguchi, S., Mitsui, S., Miyake, S., et al. (2000) The 5′ upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr. Biol. 10, 873–876.CrossRefPubMedGoogle Scholar
  9. 9.
    Yamazaki, S., Numano, R., Abe, M., et al. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685.CrossRefPubMedGoogle Scholar
  10. 10.
    Stanewsky, R., Kaneko, M., Emery, P., et al. (1998) The cry b mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692.CrossRefPubMedGoogle Scholar
  11. 11.
    Stempfl, T., Vogel, M., Szabo, G., et al. (2002) Identification of circadian-clock-regulated enhancers and genes of Drosophila melanogaster by transposon mobilization and luciferase reporting of cyclical gene expression. Genetics 160, 571–593.PubMedGoogle Scholar
  12. 12.
    Emery, I. F., Noveral, J. M., Jamison, C. F., and Siwicki, K. K. (1997) Rhythms of Drosophila period gene expression in culture. Proc. Natl. Acad. Sci. USA 94, 4092–4096.CrossRefPubMedGoogle Scholar
  13. 13.
    Krishnan, B., Levine, J. D., Lynch, M. K., et al. (2001) A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 313–317.CrossRefPubMedGoogle Scholar
  14. 14.
    Levine, J. D., Funes, P., Dowse, H. B., and Hall, J. C. (2002) Advanced analysis of a cryptochrome mutation’s effects on the robustness and phase of molecular cycles in isolated peripheral tissues of Drosophila. BMC Neurosci. 3, 5.CrossRefPubMedGoogle Scholar
  15. 15.
    Plautz, J. D., Kaneko, M., Hall, J. C., and Kay, S. A. (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–1635.CrossRefPubMedGoogle Scholar
  16. 16.
    Stanewsky, R., Jamison, C. F., Plautz, J. D., Kay, S. A., and Hall, J. C. (1997) Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 16, 5006–5018.CrossRefPubMedGoogle Scholar
  17. 17.
    Stanewsky, R., Lynch, K. S., Brandes, C., and Hall, J. C. (2002) Mapping of elements involved in regulating normal temporal period and timeless RNA expression patterns in Drosophila melanogaster. J. Biol. Rhythms 17, 293–306.CrossRefPubMedGoogle Scholar
  18. 18.
    Veleri, S., Brandes, C., Helfrich-Forster, C., Hall, J. C., and Stanewsky, R. (2003) A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr. Biol. 13, 1758–1767.CrossRefPubMedGoogle Scholar
  19. 19.
    Levine, J. D., Funes, P., Dowse, H. B., and Hall, J. C. (2002) Signal analysis of behavioral and molecular cycles. BMC Neurosci. 3, 1.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Wangjie Yu
    • 1
    • 2
  • Paul E. Hardin
    • 1
    • 2
  1. 1.Department of BiologyTexas A&M UniversityCollege Station
  2. 2.Center for Research on Biological RhythmsTexas A&M UniversityCollege Station

Personalised recommendations