Basic Protocols for Zebrafish Cell Lines

Maintenance and Transfection
  • Daniela Vallone
  • Cristina Santoriello
  • Srinivas Babu Gondi
  • Nicholas S. Foulkes
Part of the Methods in Molecular Biology™ book series (MIMB, volume 362)


Cell lines derived from zebrafish embryos show great potential as cell culture tools to study the regulation and function of the vertebrate circadian clock. They exhibit directly light-entrainable rhythms of clock gene expression that can be established by simply exposing cultures to light-dark cycles. Mammalian cell lines require treatments with serum or activators of signaling pathways to initiate transient, rapidly dampening clock rhythms. Furthermore, zebrafish cells grow at room temperature, are viable for long periods at confluence, and do not require a CO2-enriched atmosphere, greatly simplifying culture conditions. Here we describe detailed methods for establishing zebrafish cell cultures as well as optimizing transient and stable transfections. These protocols have been successfully used to introduce luciferase reporter constructs into the cells and thereby monitor clock gene expression in vivo. The bioluminescence assay described here lends itself particularly well to high-throughput analysis.

Key Words

Zebrafish cells electroporation luciferase circadian clock light 


  1. 1.
    Klein, D. M., Moore, R. Y., and Reppert, S. M. (1991) Suprachiasmatic Nucleus—The Mind’s Clock. Oxford University Press, New York.Google Scholar
  2. 2.
    Menaker, M., Moreira, L. F., and Tosini, G. (1997) Evolution of circadian organization in vertebrates. Braz. J. Med. Biol. Res. 30, 305–313.CrossRefPubMedGoogle Scholar
  3. 3.
    Reppert, S. M., and Weaver, D. R. (2001) Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676.CrossRefPubMedGoogle Scholar
  4. 4.
    Whitmore, D., Foulkes, N. S., Strahle, U., and Sassone-Corsi, P. (1998) Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 1, 701–707.CrossRefPubMedGoogle Scholar
  5. 5.
    Yamazaki, S., Numano, R., Abe, M., et al. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685.CrossRefPubMedGoogle Scholar
  6. 6.
    Whitmore, D., Foulkes, N. S., and Sassone-Corsi, P. (2000) Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404, 87–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Vallone, D., Gondi, B., Whitmore, D., and Foulkes, N. S. (2004) E-box function in a novel period gene repressed by light. Proc. Natl. Acad. Sci. USA 101, 4106–4111.CrossRefPubMedGoogle Scholar
  8. 8.
    Westerfield, M. (2000) The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). Univ. of Oregon Press, Eugene.Google Scholar
  9. 9.
    Helmrich, A., and Barnes, D. (1999) Zebrafish embryonal cell culture. Methods Cell Biol. 59, 29–37.CrossRefPubMedGoogle Scholar
  10. 10.
    Andreason, G. L., and Evans, G. A. (1988) Introduction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques 6, 650–660.PubMedGoogle Scholar
  11. 11.
    Kinosita, K., Jr., and Tsong, T. Y. (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim. Biophys. Acta 471, 227–242.CrossRefPubMedGoogle Scholar
  12. 12.
    Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  13. 13.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefPubMedGoogle Scholar
  14. 14.
    Lin, S., Gaiano, N., Culp, P., et al. (1994) Integration and germ-line transmission of a pseudotyped retroviralvector in zebrafish. Science 265, 666–669.CrossRefPubMedGoogle Scholar
  15. 15.
    Dekens, M. P., Santoriello, C., Vallone, D., Grassi, G., Whitmore, D., and Foulkes, N. S. (2003) Light regulates the cell cycle in zebrafish. Curr. Biol. 13, 2051–2057.CrossRefPubMedGoogle Scholar
  16. 16.
    Andreason, G. L., and Evans, G. A. (1989) Optimization of electroporation for transfection of mammalian cell lines. Anal. Biochem. 180, 269–275.CrossRefPubMedGoogle Scholar
  17. 17.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields EMBO J. 1, 841–845.PubMedGoogle Scholar
  18. 18.
    Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA 81, 7161–7165.CrossRefPubMedGoogle Scholar
  19. 19.
    Toneguzzo, F., Hayday, A. C., and Keating, A. (1986) Electric field-mediated DNA transfer: transient and stable gene expression in human and mouse lymphoid cells Mol. Cell Biol. 6, 703–706.PubMedGoogle Scholar
  20. 20.
    Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.CrossRefPubMedGoogle Scholar
  21. 21.
    Reiss, M., Jastreboff, M. M., Bertino, J. R., and Narayanan, R. (1986) DNA-mediated gene transfer into epidermal cells using electroporation Biochem. Biophys. Res. Commun. 137, 244–249.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Daniela Vallone
    • 1
  • Cristina Santoriello
    • 1
  • Srinivas Babu Gondi
    • 1
  • Nicholas S. Foulkes
    • 1
  1. 1.Department of GeneticsMax-Planck Institut für EntwicklungsbiologieTübingenGermany

Personalised recommendations