Advertisement

Identification of Clock Genes Using Difference Gel Electrophoresis

  • Natasha A. Karp
  • Kathryn S. Lilley
Part of the Methods in Molecular Biology™ book series (MIMB, volume 362)

Abstract

Proteomics is the study of the complete set of proteins encoded by the genome. The study of the proteome involves the investigation of changes in protein abundance, localization, involvement in multiprotein complexes, and detection of different protein isoforms and posttranslational modifications under defined conditions, such as the circadian cycle. This type of approach complements comparative gene expression studies providing additional information with respect to posttranscriptional processing. One of the key techniques used to study the proteome is two-dimensional gel electrophoresis. This technique has the ability to separate complex protein mixtures with high resolution. A significant improvement in this technology has been development of difference gel electrophoresis. Here, proteins are first labeled with one of three spectrally resolvable fluorescent cyanine dyes before being separated in two dimensions according to their charge and size, respectively. Multiplexing can accurately and reproducibly quantify protein expression across multiple gels. A multiple-gel approach allows the detection of differentially expressed protein spots using statistical methods to compare expression across different experimental groups. The proteins can be subsequently identified by mass spectrometric methods. This approach now allows more complex experimental designs, such as the time course experiments essential to the study of circadian rhythms.

Key Words

Proteomics 2D gel electrophoresis fluorescent labeling of proteins difference gel electrophoresis mass spectrometry 

References

  1. 1.
    Akhtar, R. A., Reddy, A. B., Maywood, E. S., et al. (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550.CrossRefPubMedGoogle Scholar
  2. 2.
    Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., et al. (1995) Progress with gene-product mapping of the mollicutes—mycoplasma—genitalium. Electrophoresis 16, 1090–1094.CrossRefPubMedGoogle Scholar
  3. 3.
    Malone, J. P., Radabaugh, M. R., Leimgruber, R. M., and Gerstenecker, G. S. (2001) Practical aspects of fluorescent staining for proteomics applications. Electrophoresis 22, 919–932.CrossRefPubMedGoogle Scholar
  4. 4.
    Unlu, M., Morgan, M. E., and Minden, J. S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.CrossRefPubMedGoogle Scholar
  5. 5.
    Shaw, J., Rowlinson, R., Nickson, J., et al. (2003) Evaluation of saturation labeling 2D difference gel electrophoresis fluorescent dyes. Proteomics 3, 1181–1195.CrossRefPubMedGoogle Scholar
  6. 6.
    Alban, A., David, S. O., Bjorkesten, L., et al. (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Kubis, S., Baldwin, A., Patel, R., et al. (2003) The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import and accumulation of photosynthetic proteins. Plant Cell 15, 1859–1871.CrossRefPubMedGoogle Scholar
  8. 8.
    Van den Bergh, G., Clerens, S., Vandesande, F., and Arckens, L. (2003) Reversed-phase high-performance liquid chromatography prefractionation prior to two-dimensional difference gel electrophoresis and mass spectrometry identifies new differentially expressed proteins between striate cortex of kitten and adult cat. Electrophoresis 24, 1471–1481.CrossRefPubMedGoogle Scholar
  9. 9.
    Gharbi, S., Gaffney, P., Yang, A., et al. (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol. Cell Proteomics 1, 91–98.CrossRefPubMedGoogle Scholar
  10. 10.
    Hu, Y., Wang, G., Chen, G. Y., Fu, X., and Yao, S. Q. (2003) Proteome analysis of Saccharomyces cerevisiae under metal stress by two-dimensional differential gel electrophoresis. Electrophoresis 24, 1458–1470.CrossRefPubMedGoogle Scholar
  11. 11.
    Yan, J. X., Devenish, A. T., Wait, R., Stone, T., Lewis, S., and Fowler, S. (2002) Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2, 1682–1698.CrossRefPubMedGoogle Scholar
  12. 12.
    Vierstraete, E., Verleyen, P., Baggerman, G., et al. (2004) A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph. Proc. Natl. Acad. Sci. USA 101, 470–475. Epub Jan. 5, 2004.CrossRefPubMedGoogle Scholar
  13. 13.
    Zuo, X., Echan, L., Hembach, P., et al. (2001) Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble large proteins. Electrophoresis 22, 1603–1615.CrossRefPubMedGoogle Scholar
  14. 14.
    Hoving, S., Voshol, H., and van Oostrum, J. (2000) Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophoresis 21, 2617–2621.CrossRefPubMedGoogle Scholar
  15. 15.
    Tonella, L., Hoogland, C., Binz, P. A., Appel, R. D., Hochstrasser, D. F., and Sanchez, J. C. (2001) New perspectives in the Eschericihia coli proteome investigation Proteomics 1, 409–423.CrossRefPubMedGoogle Scholar
  16. 16.
    Gade, D., Thiermann, J., Markowsky, D., and Rabus, R. (2003). Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1. J. Mol. Microbiol. Biotechnol. 5, 240–251.CrossRefPubMedGoogle Scholar
  17. 17.
    Patton, W. F. (2000) A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21, 1123–1144.CrossRefPubMedGoogle Scholar
  18. 18.
    Karas, M., and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.CrossRefPubMedGoogle Scholar
  19. 19.
    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Mann, M., Hojrup, P., and Roepstorff, P. (1993) Use of mass-spectrometric molecular-weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 22, 338–345.CrossRefPubMedGoogle Scholar
  21. 21.
    Yates, J. R. 3rd, Speicher, S., Griffin, P. R., and Hunkapiller, T. (1993) Peptide mass maps—a highly informative approach to protein identification. Anal. Biochem. 214, 397–408.CrossRefPubMedGoogle Scholar
  22. 22.
    Pappin, D. J., Hojrup, P., and Bleasby, A. J. (1993) Rapid identification of proteins by peptide mass fingerprinting. Curr. Biol. 3, 327–332.CrossRefPubMedGoogle Scholar
  23. 23.
    Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., and Watanabe, C. (1993) Identifying proteins from 2-dimensional gels by molecular mass searching of peptide-fragments in protein-sequence databases. Proc. Natl. Acad. Sci. USA 90, 5011–5015.CrossRefPubMedGoogle Scholar
  24. 24.
    Karp, N. A., Kreil, D. P., and Lilley, K. S. (2004) Determining a significant change in protein expression with DeCyder™ during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4, 1421–1432.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Natasha A. Karp
    • 1
  • Kathryn S. Lilley
    • 1
  1. 1.Cambridge Centre for Proteomics, Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations