Wnt Signaling pp 197-205 | Cite as

ROCK Enzymatic Assay

  • John D. Doran
  • Marc D. Jacobs
Part of the Methods in Molecular Biology™ book series (MIMB, volume 468)


We describe the protocols for measuring Rho-associated coiled-coil-containing kinase (ROCK) activity in vitro. A His-tagged, constitutively active form of the protein (lacking C-terminal inhibitory domains) is expressed in baculovirus. The protein is purified by a combination of metal affinity, ion exchange, and size exclusion chromatography. Enzymatic activity is measured spectrophotometrically in a coupled assay format wherein a molecule of NADH is oxidized to NAD+ each time a phosphate is transferred by ROCK.

Key words

Kinase Phosphorylation Coupled-assay Baculovirus Dimer Rho ROCK 



We thank Stephen Chambers, Douglas Austen, Scott Raybuck, and Edward Fox for helpful discussions and critical comments on this manuscript.


  1. 1.
    Jenny, A. and Mlodzik, M. (2006) Planar cell polarity signaling: a common mechanism for cellular polarization. Mt Sinai J Med 73, 738–750.PubMedGoogle Scholar
  2. 2.
    Fanto, M. and McNeill, H. (2004) Planar polarity from flies to vertebrates. J Cell Sci 117, 527–533.CrossRefPubMedGoogle Scholar
  3. 3.
    Masckauchan, T. N. and Kitajewski, J. (2006) Wnt/Frizzled signaling in the vasculature: new angiogenic factors in sight. Physiology (Bethesda) 21, 181–188.Google Scholar
  4. 4.
    Huelsken, J. and Behrens, J. (2002) The Wnt signalling pathway. J Cell Sci 115, 3977–3978.CrossRefGoogle Scholar
  5. 5.
    Riento, K. and Ridley, A. J. (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4, 446–456.CrossRefPubMedGoogle Scholar
  6. 6.
    Loirand, G., Guerin, P., and Pacaud, P. (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98, 322–334.CrossRefPubMedGoogle Scholar
  7. 7.
    Noma, K., Oyama, N., and Liao, J. K. (2006) Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol 290, C661–C668.CrossRefPubMedGoogle Scholar
  8. 8.
    Mukai, Y., Shimokawa, H., Matoba, T., Kandabashi, T., Satoh, S., Hiroki, J., Kaibuchi, K., and Takeshita, A. (2001) Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J. 15, 1062–1064.PubMedGoogle Scholar
  9. 9.
    Shimokawa, H. (2002) Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol 39, 319–327.CrossRefPubMedGoogle Scholar
  10. 10.
    Gosens, R., Schaafsma, D., Nelemans, S. A., and Halayko, A. J. (2006) Rho-kinase as a drug target for the treatment of airway hyperrespon-siveness in asthma. Mini Rev Med Chem 6, 339–348.CrossRefPubMedGoogle Scholar
  11. 11.
    Ohki, S., Iizuka, K., Ishikawa, S., Kano, M., Dobashi, K., Yoshii, A., Shimizu, Y., Mori, M., and Morishita, Y. (2001) A highly selective inhibitor of Rho-associated coiled-coil forming protein kinase, Y-27632, prolongs cardiac allograft survival of the BALB/c-to-C3H/He mouse model. J Heart Lung Transplant 20, 956–963.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao, D. and Pothoulakis, C. (2003) Rho GTPases as therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 7, 583–592.CrossRefPubMedGoogle Scholar
  13. 13.
    Kureishi, Y., Kobayashi, S., Amano, M., Kimura, K., Kanaide, H., Nakano, T., Kai-buchi, K., and Ito, M. (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phospho-rylation. J Biol Chem 272, 12257–12260.CrossRefPubMedGoogle Scholar
  14. 14.
    Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associ-ated kinase (Rho-kinase). J Biol Chem 271, 20246–20249.CrossRefPubMedGoogle Scholar
  15. 15.
    Kawano, Y., Fukata, Y., Oshiro, N., Amano, M., Nakamura, T., Ito, M., Matsumura, F., Inagaki, M., and Kaibuchi, K. (1999) Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rhokinase in vivo. J Cell Biol 147, 1023–1038.CrossRefPubMedGoogle Scholar
  16. 16.
    Leung, T., Chen, X. Q., Manser, E., and Lim, L. (1996) The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16, 5313–5327.PubMedGoogle Scholar
  17. 17.
    Jacobs, M., Hayakawa, K., Swenson, L., Bellon, S., Fleming, M., Taslimi, P., and Doran, J. (2006) The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J Biol Chem 281, 260–268.CrossRefPubMedGoogle Scholar
  18. 18.
    Bush, E. W., Helmke, S. M., Birnbaum, R. A., and Perryman, M. B. (2000) Myotonic dystrophy protein kinase domains mediate localization, oligomerization, novel catalytic activity, and autoinhibition. Biochemistry (Mosc) 39, 8480–8490.CrossRefGoogle Scholar
  19. 19.
    Tan, I., Seow, K. T., Lim, L., and Leung, T. (2001) Intermolecular and intramolecular interactions regulate catalytic activity of myotonic dystrophy kinase-related Cdc42 binding kinase alpha. Mol Cell Biol 21, 2767–2778.CrossRefPubMedGoogle Scholar
  20. 20.
    Di Cunto, F., Calautti, E., Hsiao, J., Ong, L., Topley, G., Turco, E., and Dotto, G. P. (1998) Citron rho-interacting kinase, a novel tissue-specific ser/thr kinase encompassing the Rho-Rac-binding protein Citron. J Biol Chem 273, 29706–29711.CrossRefPubMedGoogle Scholar
  21. 21.
    Amano, M., Chihara, K., Nakamura, N., Kaneko, T., Matsuura, Y., and Kaibuchi, K. (1999) The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem 274, 32418–32424.CrossRefPubMedGoogle Scholar
  22. 22.
    Ishizaki, T., Maekawa, M., Fujisawa, K., Okawa, K., Iwamatsu, A., Fujita, A., Watan-abe, N., Saito, Y., Kakizuka, A., Morii, N., and Narumiya, S. (1996) The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 15, 1885–1893.PubMedGoogle Scholar
  23. 23.
    Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F. (2001) Membrane blebbing during apopto-sis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3, 339–345.CrossRefPubMedGoogle Scholar
  24. 24.
    Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J. (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3, 346–352.CrossRefPubMedGoogle Scholar
  25. 25.
    Doran, J. D., Liu, X., Taslimi, P., Saadat, A., and Fox, T. (2004) New insights into the structure-function relationships of Rho-associated kinase: a thermodynamic and hydrodynamic study of the dimer-to-monomer transition and its kinetic implications. Biochem J 384, 255–262.CrossRefPubMedGoogle Scholar
  26. 26.
    Hammond, S. M., Jenco, J. M., Nakashima, S., Cadwallader, K., Gu, Q., Cook, S., Nozawa, Y., Prestwich, G. D., Frohman, M. A., and Morris, A. J. (1997) Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J Biol Chem 272, 3860–3868.CrossRefPubMedGoogle Scholar
  27. 27.
    Hathaway, D. R. and Haeberle, J. R. (1983) Selective purification of the 20,000-Da light chains of smooth muscle myosin. Anal Biochem 135, 37–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Nolen, B., Taylor, S., and Ghosh, G. (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15, 661–675.CrossRefPubMedGoogle Scholar
  29. 29.
    Yamaguchi, H., Kasa, M., Amano, M., Kaibuchi, K., and Hakoshima, T. (2006) Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure 14, 589–600.CrossRefPubMedGoogle Scholar
  30. 30.
    Kiianitsa, K., Solinger, J. A., and Heyer, W. D. (2003) NADH-coupled microplate photometric assay for kinetic studies of ATP-hydrolyzing enzymes with low and high specific activities. Anal Biochem 321, 266–271.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen, G., Porter, M. D., Bristol, J. R., Fit-zgibbon, M. J., and Pazhanisamy, S. (2000) Kinetic mechanism of the p38-alpha MAP kinase: phosphoryl transfer to synthetic peptides. Biochemistry 39, 2079–2087.CrossRefPubMedGoogle Scholar
  32. 32.
    Fox, T., Coll, J. T., Xie, X., Ford, P. J., Ger-mann, U. A., Porter, M. D., Pazhanisamy, S., Fleming, M. A., Galullo, V., Su, M. S., and Wilson, K. P. (1998) A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase. Protein Sci 7, 2249–2255.CrossRefPubMedGoogle Scholar
  33. 33.
    Trauger, J. W., Lin, F. F., Turner, M. S., Stephens, J., and LoGrasso, P. V. (2002) Kinetic mechanism for human Rho-Kinase II (ROCK-II). Biochemistry 41, 8948– 8953.CrossRefPubMedGoogle Scholar
  34. 34.
    Turner, M. S., Fen Fen, L., Trauger, J. W., Stephens, J., and LoGrasso, P. (2002) Characterization and purification of truncated human Rho-kinase II expressed in Sf-21 cells. Arch Biochem Biophys 405, 13–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Chambers, S. P., Austen, D. A., Fulghum, J. R., and Kim, W. M. (2004) High-throughput screening for soluble recombinant expressed kinases in Escherichia coli and insect cells. Protein Expr Purif 36, 40–47.CrossRefPubMedGoogle Scholar
  36. 36.
    Chambers, S. P. (2002) High-throughput protein expression for the post-genomic era. Drug Discov Today 7, 759–765.CrossRefPubMedGoogle Scholar
  37. 37.
    Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch, A. (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31, 3784–3788.CrossRefPubMedGoogle Scholar
  38. 38.
    Futer, O., Saadat, A. R., Doran, J. D., Ray-buck, S. A., and Pazhanisamy, S. (2006) Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction. Biochemistry 45, 7913–7923.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John D. Doran
    • 1
  • Marc D. Jacobs
    • 2
  1. 1.Protein BiochemistryVertex PharmaceuticalsCambridgeUSA
  2. 2.Structural BiologyVertex PharmaceuticalsCambridgeUSA

Personalised recommendations