Methods to Reconstruct and Compare Transcriptional Regulatory Networks

Part of the Methods in Molecular Biology book series (MIMB, volume 541)


The availability of completely sequenced genomes and the wealth of literature on gene regulation have enabled researchers to model the transcriptional regulation system of some organisms in the form of a network. In order to reconstruct such networks in non-model organisms, three principal approaches have been taken. First, one can transfer the interactions between homologous components from a model organism to the organism of interest. Second, microarray experiments can be used to detect patterns in gene expression that stem from regulatory interactions. Finally, knowledge of experimentally characterized transcription factor binding sites can be used to analyze the promoter sequences in a genome in order to identify potential binding sites. In this chapter, we will focus in detail on the first approach and describe methods to reconstruct and analyze the transcriptional regulatory networks of uncharacterized organisms by using a known regulatory network as a template.

Key words

Transcriptional regulatory network network reconstruction template-based method network motif lifestyle statistical significance 



MMB acknowledges the Medical Research Council, UK, for financial support. LA acknowledges the Intramural Research Program of the NIH, NLM, NCBI, USA, for funding. We thank Arthur Wuster for critically reading this manuscript.


  1. 1.
    Steinmetz LM, Davis RW. Maximizing the potential of functional genomics. Nat Rev Genet 2004, 5:190–201.PubMedCrossRefGoogle Scholar
  2. 2.
    Quackenbush J. Computational analysis of microarray data. Nat Rev Genet 2001, 2:418–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Young RA. Biomedical discovery with DNA arrays. Cell 2000, 102:9–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Bulyk ML. DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol 2006, 17:422–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Harbison CT, Gordon DB, Lee TI, et al. Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431:99–104.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee TI, Rinaldi NJ, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002, 298:799–804.PubMedCrossRefGoogle Scholar
  7. 7.
    Horak CE, Luscombe NM, Qian J, et al. Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 2002, 16:3017–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Salgado H, Gama-Castro S, Peralta-Gil M, et al. RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucl Acids Res 2006, 34:D394–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A. CoryneRegNet: An ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. BMC Genomics 2006, 7:24.PubMedCrossRefGoogle Scholar
  10. 10.
    Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 2004, 14:283–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Barabasi AL, Oltvai ZN. Network biology: Understanding the cell's functional organization. Nat Rev Genet 2004, 5:101–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Madan Babu M, Teichmann SA, Aravind L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol 2006, 358:614–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Yu H, Luscombe NM, Lu HX, et al. Annotation transfer between genomes: Protein-protein interologs and protein-DNA regulogs. Genome Res 2004, 14:1107–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Lozada-Chavez I, Janga SC, Collado-Vides J. Bacterial regulatory networks are extremely flexible in evolution. Nucl Acids Res 2006, 34:3434–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Segal E, Shapira M, Regev A, et al. Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34:166–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102–05.PubMedCrossRefGoogle Scholar
  17. 17.
    Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A. Reverse engineering of regulatory networks in human B cells. Nat Genet 2005, 37:382–90.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang SC. Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm. J Bioinform Comput Biol 2004, 2:441–58.PubMedCrossRefGoogle Scholar
  19. 19.
    Qian J, Lin J, Luscombe NM, Yu H, Gerstein M. Prediction of regulatory networks: Genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 2003, 19:1917–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Alkema WB, Lenhard B, Wasserman WW. Regulog analysis: Detection of conserved regulatory networks across bacteria: Application to Staphylococcus aureus. Genome Res 2004, 14:1362–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang T, Stormo GD. Identifying the conserved network of cis-regulatory sites of a eukaryotic genome. Proc Natl Acad Sci USA 2005, 102:17400–05.PubMedCrossRefGoogle Scholar
  22. 22.
    Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 2004, 5:R90.PubMedCrossRefGoogle Scholar
  23. 23.
    Bar-Joseph Z, Gerber GK, Lee TI, et al. Computational discovery of gene modules and regulatory networks. Nat Biotechnol 2003, 21:1337–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Xing B, van der Laan MJ. A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data. J Comput Biol 2005, 12:229–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Haverty PM, Hansen U, Weng Z. Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucl Acids Res 2004, 32:179–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Gao F, Foat BC, Bussemaker HJ. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 2004, 5:31.PubMedCrossRefGoogle Scholar
  27. 27.
    Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with expression. Nat Genet 2001, 27:167–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Kim H, Hu W, Kluger Y. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae. BMC Bioinformatics 2006, 7:165.PubMedCrossRefGoogle Scholar
  29. 29.
    Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31:64–68.PubMedCrossRefGoogle Scholar
  30. 30.
    Albert R. Scale-free networks in cell biology. J Cell Sci 2005, 118:4947–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Teichmann SA, Babu MM. Gene regulatory network growth by duplication. Nat Genet 2004, 36:492–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Guelzim N, Bottani S, Bourgine P, Kepes F. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002, 31:60–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Lespinet O, Wolf YI, Koonin EV, Aravind L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 2002, 12:1048–59.PubMedCrossRefGoogle Scholar
  34. 34.
    de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics 2004, 20:1453–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Pavlidis P, Noble WS. Matrix2png: A utility for visualizing matrix data. Bioinformatics 2003, 19:295–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl Acids Res 1997, 25:3389–402.PubMedCrossRefGoogle Scholar
  37. 37.
    Kashtan N, Itzkovitz S, Milo R, Alon U. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 2004, 20:1746–58.PubMedCrossRefGoogle Scholar
  38. 38.
    Makita Y, Nakao M, Ogasawara N, Nakai K. DBTBS: Database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucl Acids Res 2004, 32:D75–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Baumbach J, Wittkop T, Rademacher K, Rahmann S, Brinkrolf K, Tauch A. CoryneRegNet 3.0-An interactive systems biology platform for the analysis of gene regulatory networks in corynebacteria and Escherichia coli. J Biotechnol 2007 Apr 30;129(2):279–89.Google Scholar
  40. 40.
    Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol 2006, 360:213–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Balaji S, Iyer LM, Aravind L, Babu MM. Uncovering a hidden distributed architecture behind scale-free transcriptional regulatory networks. J Mol Biol 2006, 360:204–12.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.MRC Laboratory of Molecular BiologyUK
  2. 2.National Center for Biotechnology InformationNational Library of Medicine, National Institutes of HealthBethesdaUSA

Personalised recommendations