Skip to main content

The Bioverse API and Web Application

  • Protocol
  • First Online:
Computational Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 541))

  • 2697 Accesses

Abstract

The Bioverse is a framework for creating, warehousing and presenting biological information based on hierarchical levels of organisation. The framework is guided by a deeper philosophy of desiring to represent all relationships between all components of biological systems towards the goal of a wholistic picture of organismal biology. Data from various sources are combined into a single repository and a uniform interface is exposed to access it. The power of the approach of the Bioverse is that, due to its inclusive nature, patterns emerge from the acquired data and new predictions are made. The implementation of this repository (beginning with acquisition of source data, processing in a pipeline, and concluding with storage in a relational database) and interfaces to the data contained in it, from a programmatic application interface to a user friendly web application, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Yu, J. Wang, W. Lin, et al. The genomes of Oryza sativa: a history of duplications. Public Libr. Sci. Biol. 3: e38 (2005).

    Google Scholar 

  2. S. Kikuchi, K. Satoh, T. Nagata, et al. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science. 301: 376–379 (2003).

    Article  PubMed  Google Scholar 

  3. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat. Genet. 25: 25–29 (2000).

    Article  Google Scholar 

  4. J. Cherry, C. Adler, C. Ball, et al. SGD: Saccharomyces genome database. Nucl. Acids Res. 261: 73–79 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. T. Harris, N. Chen, F. Cunningham, et al. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res. 32: D411–D417 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. F. Consortium. The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 31: 172–175 (2003).

    Article  Google Scholar 

  7. S. Peri, J. D. Navarro, R. Amanchy, et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13(10): 2363–2371 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. R. Apweiler, T. Attwood, A. Bairoch, et al. InterPro-an integrated documentation resource for protein families, domains and functional sites. Bioinformatics. 16: 1145–1150 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucl. Acids Res. 281: 235–242 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. A. G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247: 536–540 (1995).

    PubMed  CAS  Google Scholar 

  11. T. Hubbard, A. Murzin, S. Brenner, C. Chothia. SCOP: a structural classification of proteins database. Nucleic Acids Res. 25: 236–239 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. L. Lo Conte, S. E. Brenner, T. J. P. Hubbard, C. Chothia, A. G. Murzin. SCOP database in 2002: refinements accommodate structural genomics. Nucl. Acids Res. 30(1): 264–267 (2002).

    Google Scholar 

  13. A. Andreeva, D. Howorth, S. E. Brenner, et al. SCOP database in 2004: refinements integrate structure and sequence family data. Nucl. Acids Res. 32 (2004).

    Google Scholar 

  14. J. Gough, K. Karplus, R. Hughey, C. Chothia. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313: 903–919 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. J. Gough, C. Chothia. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 30: 268–272 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. L. McGuffin, K. Bryson, D. Jones. The PSIPRED protein structure prediction server. Bioinformatics. 16: 404–405 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. R. Samudrala, J. Moult. A graph-theoretic algorithm for comparative modelling of protein structure. J. Mol. Biol. 279: 287–302 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. R. Samudrala, Y. Xia, E. Huang, M. Levitt. Ab initio protein structure prediction using a combined hierarchical approach. Prot.: Struct. Funct. Genet. S3: 194–198 (1999).

    Article  Google Scholar 

  19. E. Huang, R. Samudrala, J. Ponder. Ab initio fold prediction of small helical proteins using distance geometry and knowledge-based scoring functions. J. Mol. Biol. 290: 267–281 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Xia, E. Huang, M. Levitt, R. Samudrala. Ab initio construction of protein tertiary structures using a hierarchical approach. J. Mol. Biol. 300: 171–185 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. G. Bader, D. Betel, C. Hogue. BIND: the biomolecular interaction network database. Nucleic Acids Res. 31: 248–250 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. H. Mewes, D. Frishman, U. Guldener, et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30: 31–34 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. I. Xenarios, L. Salwinski, X. Duan, et al. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30: 303–305 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. L. Matthews, P. Vaglio, J. Reboul, et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein intera ctions or “interologs”. Genome Res. 11: 2120–2126 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. J. McDermott, R. Bumgarner, R. Samudrala. Functional annotation from predicted protein interaction networks. Bioinformatics. 21: 3217–3226 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. Computing. http://compbio.washington.edu/computing.html.

  27. S. Altschul, T. Madden, A. Schaffer, et al. Gapped BLAST and PSI-BLAST: a new generation of database programs. Nucleic Acids Res. 25: 3389–3402 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. HMMER: biosequence analysis using profile hidden Markov models. http://hmmer.janelia.org.

  29. L.-H. Hung, R. Samudrala. PROTINFO: secondary and tertiary protein structure prediction. Nucleic Acids Res. 31: 3736–3737 (2003).

    Article  Google Scholar 

  30. L. Hung, S. Ngan, T. Liu, R. Samudrala. PROTINFO: new algorithms for enhanced protein structure predictions. Nucleic Acids Res. 33: W77–W80 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. L.-H. Hung, R. Samudrala. An automated assignment-free Bayesian approach for accurately identifying proton contacts from NOESY data. J. Biomol. NMR. 36: 189–198 (2006).

    Google Scholar 

  32. L.-H. Hung, R. Samudrala. Accurate and automated assignment of secondary structure with PsiCSI. Protein Sci. 12: 288–295 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. K. Wang, J. A. Horst, G. Cheng, D. C. Nickle, R. Samudrala. Protein Meta-Functional Signatures from Combining Sequence, Structure, Evolution, and Amino Acid Property Information. PLoS Computational Biology 4(9): e1000181 (2008).

    Google Scholar 

  34. G. Cheng, B. Qian, R. Samudrala, D. Baker. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Nucleic Acids Res. 33: 5861–5867 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. K. Wang, R. Samudrala. FSSA: a novel method for identifying functional signatures from structural alignments. Bioinformatics. 21: 2969–2977 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. G. Cheng, R. Samudrala. An all-atom geometrical knowledge-based scoring function to predict protein metal ion binding sites, affinities and specificities. manuscript in preparation (2007).

    Google Scholar 

  37. E. Jenwitheesuk, K. Wang, J. Mittler, R. Samudrala. PIRSpred: a web server for reliable HIV-1 protein-inhibitor resistance/susceptibility prediction. Trends Microbiol. 13: 150–151 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. E. Jenwitheesuk, R. Samudrala. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach. Antiv. Ther. 10: 157–166 (2005).

    CAS  Google Scholar 

  39. R. Jenwitheesuk, K. Wang, J. Mittler, R. Samudrala. Improved accuracy of HIV-1 genotypic susceptibility interpretation using a consensus approach. AIDS. 18: 1858–1859 (2004).

    Article  PubMed  Google Scholar 

  40. K. Wang, E. Jenwitheesuk, R. Samudrala, J. Mittler. Simple linear model provides highly accurate genotypic predictions of HIV-1 drug resistance. Antiv. Ther. 9: 343–352 (2004).

    CAS  Google Scholar 

  41. K. Wang, R. Samudrala. Automated functional classification of experimental and predicted protein structures. Bioinformatics. 7: 278–277 (2006).

    PubMed  Google Scholar 

  42. A. Chang, J. McDermott, Z. Frazier, M. Guerquin, R. Samudrala. INTEGRATOR: interactive graphical search of large protein interactomes over the web. Bioinformatics. 7: 146–110 (2006).

    PubMed  Google Scholar 

  43. XML-RPC Home Page. http://www.xmlrpc.com.

  44. J. McDermott, M. Guerquin, Z. Frazier, R. Samudrala. BellaVista: a flexible visualization environment for complex biological information. manuscript in preparation (2007).

    Google Scholar 

  45. JSON. http://www.json.org/.

  46. E. Birney, D. Andrews, P. Bevan, et al. Ensembl 2004. Nucleic Acids Res. 32: D468–D470 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. A. Birkland, G. Yona. BIOZON: a hub of heterogeneous biological data. Nucl. Acids Res. 34: D235–D242 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. B. Breitkreutz, C. Stark, M. Tyers. The GRID: the general repository for interaction datasets. Genome Biol. 4: 744120 (2003).

    Google Scholar 

  49. M. Kanehisa, S. Goto, S. Kawashima, A. Nakaya. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42–46 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. K. Fleming, A. Muller, R. MacCallum, M. Sternberg. 3D-GENOMICS: a database to compare structural and functional annotations of proteins between sequenced genomes. Nucleic Acids Res. 32: D245–D250 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. D. Frishman, M. Mokrejs, D. Kosykh, et al. The PEDANT genome database. Nucleic Acids Res. 31: 207–211 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. M. L. Riley, T. Schmidt, C. Wagner, H.-W. Mewes, D. Frishman. The PEDANT genome database in 2005. Nucl. Acids Res. 33: D308–D310 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. C. von Mering, M. Huynen, D. Jaeggi, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31: 258–261 (2003).

    Article  Google Scholar 

  54. J. Mellor, I. Yanai, K. Clodfelter, J. Mintseris, C. DeLisi. Predictome: a database of putative functional links between proteins. Nucleic Acids Res. 30: 306–309 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. P. Shannon, A. Markiel, O. Ozier, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498–2504 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. H. Yu, N. Luscombe, H. Lu, et al. Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 14: 1107–1118 (2004).

    Article  PubMed  CAS  Google Scholar 

  57. Python Programming Language – Official Website. http://www.python.org.

  58. PostgreSQL: The world’s most advanced open source database. http://www.postgresql.org.

  59. CherryPy. http://www.cherrypy.org.

  60. htmltmpl templating engine. http://htmltmpl.sourceforge.net.

  61. trimpath – Google Code. http://code.google.com/p/trimpath.

Download references

Acknowledgements

We acknowledge the invaluable help in the form of comments, contributions, and critiques of the Bioverse from all members of the Samudrala group and the Department of Microbiology at the University of Washington.

Many researchers have helped in the creation of the Bioverse and Protinfo web servers. We thank the scientific community (more properly attributed in Section 3.2) for making available data and techniques we have used and relied on.

This work was and is currently supported in part by the University of Washington’s Advanced Technology Initiative in Infectious Diseases, Puget Sound Partners in Global Health, NSF CAREER Grant, NSF Grant DBI-0217241, NIH Grant GM068152 and a Searle Scholar Award to Ram Samudrala.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Guerquin, M., McDermott, J., Frazier, Z., Samudrala, R. (2009). The Bioverse API and Web Application. In: Ireton, R., Montgomery, K., Bumgarner, R., Samudrala, R., McDermott, J. (eds) Computational Systems Biology. Methods in Molecular Biology, vol 541. Humana Press. https://doi.org/10.1007/978-1-59745-243-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-243-4_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-905-5

  • Online ISBN: 978-1-59745-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics