Methods for the Inference of Biological Pathways and Networks

  • Roger E. Bumgarner
  • Ka Yee Yeung
Part of the Methods in Molecular Biology book series (MIMB, volume 541)


In this chapter, we discuss a number of approaches to network inference from large-scale functional genomics data. Our goal is to describe current methods that can be used to infer predictive networks. At present, one of the most effective methods to produce networks with predictive value is the Bayesian network approach. This approach was initially instantiated by Friedman et al. and further refined by Eric Schadt and his research group. The Bayesian network approach has the virtue of identifying predictive relationships between genes from a combination of expression and eQTL data. However, the approach does not provide a mechanistic bases for predictive relationships and is ultimately hampered by an inability to model feedback. A challenge for the future is to produce networks that are both predictive and provide mechanistic understanding. To do so, the methods described in several chapters of this book will need to be integrated. Other chapters of this book describe a number of methods to identify or predict network components such as physical interactions. At the end of this chapter, we speculate that some of the approaches from other chapters could be integrated and used to “annotate” the edges of the Bayesian networks. This would take the Bayesian networks one step closer to providing mechanistic “explanations” for the relationships between the network nodes.

Key words

Networks pathways functional genomics review computational biology 


  1. 1.
  2. 2.
    Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya, The KEGG databases at GenomeNet. Nucleic Acids Res., 2002. 30(1): 42–6.Google Scholar
  3. 3.
    Chen, C.S. and H. Zhu, Protein microarrays. Biotechniques, 2006. 40: 423, 425, 427.Google Scholar
  4. 4.
    Ren, B., et al., Genome-wide location and function of DNA binding proteins. Science, 2000. 290: 2306–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee, T.I., et al., Transcriptional regulatory networks in S. cerevisiae. Science, 2002. 298: 799–804.PubMedCrossRefGoogle Scholar
  6. 6.
    Serikawa, KA, X.L. Xu, V.L., MacKay, G.L. Law,, Q. Zong, L.P. Zhao, R.E. Bumgarner,, and D.R. Morris, The transcriptome and its translation during recovery from cell cycle arrest in S. cerevisiae. Mol Cell Proteomics, 2003. 2:191–204.PubMedCrossRefGoogle Scholar
  7. 7.
    Ule, J., K. Jensen.K., A. Mele, and R.B. Darnell, CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 2005. 37: 376–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Levy, S. and S. Hannenhalli, Identification of transcription factor binding sites in the human genome sequence. Mamm Genome, 2002. 13(9): 510–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Lohr, D., P. Venkov, and J. Zlatanova, Transcriptional regulation in the yeast GAL gene family: a complex genetic network. Faseb J, 1995. 9(9): 777–87.PubMedGoogle Scholar
  10. 10.
    Douglas, H.C. and D.C. Hawthorne, enzymatic expression and genetic linkage of genes controlling galactose utilization in saccharomyces. Genetics, 1964. 49: 837–44.PubMedGoogle Scholar
  11. 11.
    Lai, K. and L.J. Elsas, Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-deficient yeast. Biochem Biophys Res Commun, 2000. 271(2): 392–400.PubMedCrossRefGoogle Scholar
  12. 12.
    Schwikowski, B., P. Uetz, and S. Fields, A network of protein-protein interactions in yeast. Nat Biotechnol, 2000. 18(12): 1257–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Sinha, S. and M. Tompa, YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res, 2003. 31(13): 3586–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Martone, R, E.G., P. Bertone, S. Hartman, T.E. Royce, N.M. Luscombe, , J.L. Rinn, F.K. Nelson, P. Miller, M. Gerstein, S. Weissman, and M. Snyder, Distribution of NF-kappaB-binding sites across human chromosome 22. . Proc Natl Acad Sci, 2003. 100: 12247–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Yeung, K.Y., M. Medvedovic, and R.E. Bumgarner, From co-expression to co-regulation: how many microarray experiments do we need? Genome Biol, 2004. 5(7): R48.PubMedCrossRefGoogle Scholar
  16. 16.
    Spellman, P.T., G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 1998. 9(12): 3273–97.PubMedGoogle Scholar
  17. 17.
    Shah, N.H., D.C. King, P.N. Shah, and N.V. Fedoroff, A tool-kit for cDNA microarray and promoter analysis. Bioinformatics, 2003. 19(14): 1846–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Qiu, P., Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. Biochem Biophys Res Commun, 2003. 309(3): 495–501.PubMedCrossRefGoogle Scholar
  19. 19.
    Tavazoie, S., J.D. Huges, M.J. Campbell, R.J. Cho, and G.M. Church, Systematic determination of genetic network architecture. Nat Genet, 1999. 22: 281–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Wolfsberg, T.G., A.E. Gabrielian, M.J. Campbell, R.J. Cho, J.L. Spouge, and D. Landsman, Candidate regulatory sequence elements for cell cycle-dependent transcription in Saccharomyces cerevisiae. Genome Res, 1999. 9(8): 775–92.PubMedGoogle Scholar
  21. 21.
    Jelinsky, S.A., P. Estep, G.M. Church, and L.D. Samson, Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol, 2000. 20(21): 8157–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Ohler, U. and H. Niemann, Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet, 2001. 17(2): 56–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Quackenbush, J., Genomics. Microarrays – guilt by association. Science, 2003. 302(5643): 240–1.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu, X., S. Sivaganesan, K.Y. Yeung,, J. Guo, R.E. Bumgarner, and M. Medvedovic, Context-specific infinite mixtures for clustering gene expression profiles across diverse microarray dataset. Bioinformatics, 2006. e-pub.Google Scholar
  25. 25.
    Ideker, T., V. Thorsson, J.A. Ranish, R. Christmas, J. Buhler, J.K. Eng, R. Bumgarner, D.R. Goodlett, R. Aebersold, and L. Hood, Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 2001. 292(5518): 929–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Ideker, T., O. Ozier, B. Schwikowski, and A.F. Siegel, Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 2002. 18 Suppl 1: S233–40.PubMedGoogle Scholar
  27. 27.
    Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): 2498–504.PubMedCrossRefGoogle Scholar
  28. 28.
    Han, J.D., N. Bertin, T. Hao, D.S. Goldberg, G.F. Berriz, L.V. Zhang, D. Dupuy, A.J. Walhout, M.E. Cusick, F.P. Roth, and M. Vidal, Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004. 430(6995): 88–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Luscombe, N.M., M.M. Babu, H. Yu, M. Snyder, S.A. Teichmann, and M. Gerstein, Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004. 431(7006): 308–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Bumgarner, R. and M. Jones, Are we playing a "Kevin Bacon" game with microarray data? Genome Technol, 2001. 10: 104.Google Scholar
  31. 31.
    Yeang, C.H. and T.S. Jaakkola. Physical network models and multi-source data integration. in The Seventh Annual International Conference on Research in Computational Molecular Biology. 2003.Google Scholar
  32. 32.
    Soinov, L.A., M.A. Krestyaninova, and A. Brazma, Towards reconstruction of gene networks from expression data by supervised learning. Genome Biol, 2003. 4(1): R6.PubMedCrossRefGoogle Scholar
  33. 33.
    Barash, Y and N. Friedman, Context-specific Bayesian clustering for gene expression data. J Comput Biol, 2002. 9: 169–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Friedman N, M. Linial I. Nachman, and D. Peer, Using Bayesian networks to analyze expression data. J Comput Biol, 2000. 7: 601–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Pe'er, D, A. Regev, G. Elidan, and N. Friedman, Inferring subnetworks from perturbed expression profiles. . Bioinformatics, 2001. 17 Suppl 1: S215–24.PubMedGoogle Scholar
  36. 36.
    Schadt, E.E. and P.Y. Lum, Reverse engineering gene networks to identify key drivers of complex disease phenotypes. J Lipid Res, 2006. 47(12): 2601–13.Google Scholar
  37. 37.
    Ghazalpour, A., S. Doss, B. Zhang, S. Wang, C. Plaisier, R. Castellanos, A. Brozell, E.E. Schadt, T.A. Drake, A.J. Lusis, and S. Horvath, Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet, 2006. 2(8).Google Scholar
  38. 38.
    Schadt, E.E., Novel integrative genomics strategies to identify genes for complex traits. Anim Genet, 2006. 37 Suppl 1: 18–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Drake, T.A., E.E. Schadt, and A.J. Lusis, Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm Genome, 2006. 17(6): 466–79.PubMedCrossRefGoogle Scholar
  40. 40.
    Jansen, R.C. and J.P. Nap, Genetical genomics: the added value from segregation. Trends Genet, 2001. 17(7): 388–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Brem, R.B., G. Yvert, R. Clinton, and L. Kruglyak, Genetic dissection of transcriptional regulation in budding yeast. Science, 2002. 296(5568): 752–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Schadt, E.E., S.A. Monks, T.A. Drake, A.J. Lusis, N. Che, V. Colinayo, T.G. Ruff, S.B. Milligan, J.R. Lamb, G. Cavet, P.S. Linsley, M. Mao, R.B. Stoughton, and S.H. Friend, Genetics of gene expression surveyed in maize, mouse and man. Nature, 2003. 422(6929): 297–302.PubMedCrossRefGoogle Scholar
  43. 43.
    Brem, R.B. and L. Kruglyak, The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A, 2005. 102(5): 1572–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Bulyk, M.L., Analysis of sequence specificities of DNA-binding proteins with protein binding microarrays. Methods Enzymol, 2006. 410: 279–99.PubMedCrossRefGoogle Scholar
  45. 45.
    Bulyk, M.L., DNA microarray technologies for measuring protein-DNA interactions. Curr Opin Biotechnol, 2006. 17(4): 422–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Mukherjee, S., M.F. Berger, G. Jona, X.S. Wang, D. Muzzey, M. Snyder, R.A. Young, and M.L. Bulyk, Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet, 2004. 36(12): 1331–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Geier, F., J. Timmer, and C. Fleck, Reconstructing gene-regulatory networks from time series, knock-out data, and prior knowledge. BMC Syst Biol, 2007. 1(1): 11.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao, W., E. Serpedin, and E.R. Dougherty, Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics, 2006. 22(17): 2129–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Missal, K., M.A. Cross, and D. Drasdo, Gene network inference from incomplete expression data: transcriptional control of hematopoietic commitment. Bioinformatics, 2006. 22(6): 731–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Liebermeister, W. and E. Klipp, Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data. Theor Biol Med Model, 2006. 3: 42.PubMedCrossRefGoogle Scholar
  51. 51.
    Imoto, S., Y. Tamada, H. Araki, K. Yasuda, C.G. Print, S.D. Charnock-Jones, D. Sanders, C.J. Savoie, K. Tashiro, S. Kuhara, and S. Miyano, Computational strategy for discovering druggable gene networks from genome-wide RNA expression profiles. Pac Symp Biocomput, 2006: 11, 559–71.CrossRefGoogle Scholar
  52. 52.
    Huang, Y., D. Liu, and H. Wu, Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics, 2006. 62(2): 413–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Gupta, R., P. Auvinen, A. Thomas, and E. Arjas, Bayesian hierarchical model for correcting signal saturation in microarrays using pixel intensities. Stat Appl Genet Mol Biol, 2006. 5: Article20.Google Scholar
  54. 54.
    Golightly, A. and D.J. Wilkinson, Bayesian sequential inference for stochastic kinetic biochemical network models. J Comput Biol, 2006. 13(3): 838–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Dojer, N., A. Gambin, A. Mizera, B. Wilczynski, and J. Tiuryn, Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics, 2006. 7: 249.PubMedCrossRefGoogle Scholar
  56. 56.
    Zou, M. and S.D. Conzen, A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005. 21(1): 71–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Yoshida, R., S. Imoto, and T. Higuchi, Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching. Proc IEEE Comput Syst Bioinform Conf, 2005: 289–98.Google Scholar
  58. 58.
    Liebermeister, W. and E. Klipp, Biochemical networks with uncertain parameters. Syst Biol (Stevenage), 2005. 152(3): 97–107.Google Scholar
  59. 59.
    Liang, Y., B. Tayo, X. Cai, and A. Kelemen, Differential and trajectory methods for time course gene expression data. Bioinformatics, 2005. 21(13): 3009–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Ferrazzi, F., P. Magni, and R. Bellazzi, Random walk models for bayesian clustering of gene expression profiles. Appl Bioinformatics, 2005. 4(4): 263–76.PubMedCrossRefGoogle Scholar
  61. 61.
    Di, Camillo, B., F. Sanchez-Cabo, G. Toffolo, S.K. Nair, Z. Trajanoski, and C. Cobelli, A quantization method based on threshold optimization for microarray short time series. BMC Bioinformatics, 2005. 6 Suppl 4: S11.CrossRefGoogle Scholar
  62. 62.
    Beal, M.J., F. Falciani, Z. Ghahramani, C. Rangel, and D.L. Wild, A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 2005. 21(3): 349–56.PubMedCrossRefGoogle Scholar
  63. 63.
    Yu, J., V.A. Smith, P.P. Wang, A.J. Hartemink, and E.D. Jarvis, Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 2004. 20(18): 3594–603.PubMedCrossRefGoogle Scholar
  64. 64.
    Wu, F.X., W.J. Zhang, and A.J. Kusalik, Modeling gene expression from microarray expression data with state-space equations. Pac Symp Biocomput, 2004: 581–92.Google Scholar
  65. 65.
    Wang, S.C., Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm. J Bioinform Comput Biol, 2004. 2(3): 441–58.PubMedCrossRefGoogle Scholar
  66. 66.
    Sugimoto, N. and H. Iba, Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression. Genome Inform, 2004. 15(2): 121–30.PubMedGoogle Scholar
  67. 67.
    Pe'er, D., A. Regev, G. Elidan, and N. Friedman, Inferring subnetworks from perturbed expression profiles. Bioinformatics, 2001. 17 Suppl 1: S215–24.PubMedGoogle Scholar
  68. 68.
    GuhaThakurta, D., T. Xie, M. Anand, S.W. Edwards, G. Li, S.S. Wang, and E.E. Schadt, Cis-regulatory variations: a study of SNPs around genes showing cis-linkage in segregating mouse populations. BMC Genomics, 2006. 7: 235.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Roger E. Bumgarner
    • 1
  • Ka Yee Yeung
    • 1
  1. 1.Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations