Skip to main content

Modeling the Impact of Alcohol on Cortical Development in a Dish: Strategies from Mapping Neural Stem Cell Fate

  • Protocol
Alcohol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 447))

Summary

During the second trimester period, neuroepithelial stem cells give birth to millions of new neuroblasts, which migrate away from their germinal zones to populate the developing brain and terminally differentiate into neurons. During this period, large numbers of cells are also eliminated by programmed cell death. Therefore, the second trimester constitutes an important critical period for neuronal proliferation, migration, differentiation and apoptosis. Substantial evidence indicates that teratogens like ethanol can interfere with neuronal maturation. However, there is a paucity of good model systems to study early, second trimester events. In vivo models are inherently interpretatively complex because cell proliferation, migration, differentiation, and death mechanisms occur concurrently in regions like the cerebral cortex. This temporal overlap of multiple developmental critical periods makes it difficult to evaluate the relative vulnerability of any individual critical period. Our laboratory has elected to utilize fetal rodent cerebral cortical-derived neurosphere cultures as an experimental model of the second-trimester ventricular neuroepithelium. This model has enabled us to use flow cytometric approaches to identify neuroepithelial stem cell and progenitor sub-populations and to show that ethanol accelerates the maturation of neural stem cells. We have also developed a simplified mitogen-withdrawal/matrix-adhesion paradigm to model the exit of neuroepithelial cells from the ventricular zone towards the subventricular zone and cortical plate, and their maturation into multipolar neurons. We can treat neurosphere cultures with ethanol to mimic exposure during the period of neuroepithelial proliferation and by using the step-wise maturation model, ask questions about the impact of prior ethanol exposure on the subsequent maturation of neurons as they migrate and undergo terminal differentiation. The combination of neurosphere culture and stepwise maturation models will enable us to dissect out the contributions of specific developmental critical periods to the overall teratology of a drug of abuse like ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Jones, K. L., and Smith, D. W. (1975) The fetal alcohol syndrome. Teratology, 12, 1–10.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Riley, E. P., and McGee, C. L. (2005) Fetal alcohol spectrum disorders: an overview with emphasis on changes in brain and behavior. Exp. Biol. Med. (Maywood), 230, 357–365.

    CAS  Google Scholar 

  3. 3. Clarren, S. K. (1986) Neuropathology in Fetal Alcohol Syndrome, in Alcohol and Brain Development. (West, J. R., ed.). Oxford University Press, New York, pp. 158–166.

    Google Scholar 

  4. 4. Clarren, S. K., Alvord, E. C., Jr., Sumi, S. M., Streissguth, A. P., and Smith, D. W. (1978) Brain malformations related to prenatal exposure to ethanol. J. Pediatr. 92, 64–67.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Sokol, R. J., Delaney-Black, V., and Nordstrom, B. (2003) Fetal alcohol spectrum disorder. JAMA, 290, 2996–2999.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Loock C, Conry J, Cook, J. L., Chudley, A. E., and Rosales, T. (2005) Identifying fetal alcohol spectrum disorder in primary care. CMAJ 172, 628–630.

    PubMed  Google Scholar 

  7. 7. Warren, K. R., and Li, T. K. (2005) Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res. A. Clin. Mol. Teratol. 73, 195–203.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Dobbing, J., and Sands, J. (1979) Comparative aspects of the brain growth spurt. Early Hum. Dev., 3, 79–83.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Bayer, S., and Altman, J. (1995) Neurogenesis and neuronal migration, in The Rat Nervous System. (ed 2). Academic Press: San Diego, pp. 1041–1078.

    Google Scholar 

  10. 10. Cheema, Z. F., Wade, S. B., Sata, M., Walsh, K., Sohrabji, F., and Miranda, R. C. (1999) Fas/Apo (apoptosis)-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of, N. F.-kappaB. J. Neurosci. 19, 1754–1770.

    PubMed  CAS  Google Scholar 

  11. 11. Cheema, Z. F., Santillano, D. R., Wade, S. B., Newman, J. M., and Miranda, R. C. (2004) The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins. BMC Neurosci. 5, 11.

    Article  PubMed  Google Scholar 

  12. 12. West, J. R., and Hamre, K. M. (1985) Effects of alcohol exposure during different periods of development: changes in hippocampal mossy fibers. Brain Res. 349, 280–284.

    PubMed  CAS  Google Scholar 

  13. 13. Goodlett, C. R., Marcussen, B. L., West, J. R. (1990) A single day of alcohol exposure during the brain growth spurt induces brain weight restriction and cerebellar Purkinje cell loss. Alcohol 7, 107–114.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Bonthius, D. J., and West, J. R. (1990) Alcohol-induced neuronal loss in developing rats: increased brain damage with binge exposure. Alcohol. Clin. Exp. Res. 14, 107–118.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Bonthius, D. J., and West, J. R. (1991) Acute and long-term neuronal deficits in the rat olfactory bulb following alcohol exposure during the brain growth spurt. Neurotoxicol. Teratol. 13, 611–619.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Hamre, K. M., and West, J. R. (1993) The effects of the timing of ethanol exposure during the brain growth spurt on the number of cerebellar Purkinje and granule cell nuclear profiles. Alcohol. Clin. Exp. Res. 17, 610–622.

    Article  PubMed  CAS  Google Scholar 

  17. 17. West, J. R., Hamre, K. M., and Cassell, M. D. (1986) Effects of ethanol exposure during the third trimester equivalent on neuron number in rat hippocampus and dentate gyrus. Alcohol. Clin. Exp. Res. 10, 190–197.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Cheema, Z. F., West, J. R., and Miranda, R. C. (2000) Ethanol induces Fas/Apo (apoptosis)-1 mRNA and cell suicide in the developing cerebral cortex. Alcohol. Clin. Exp. Res. 24, 535–543.

    Article  PubMed  CAS  Google Scholar 

  19. 19. McAlhany, R. E.J, West, J. R., and Miranda, R. C. (2000) Glial-derived neurotrophic factor (GDNF) prevents ethanol-induced apoptosis and, J. U.N kinase phosphorylation. Dev. Brain Res. 119, 209–216.

    Article  CAS  Google Scholar 

  20. 20. Mooney, S. M., and Miller, M. W. (2003) Ethanol-induced neuronal death in organotypic cultures of rat cerebral cortex. Brain Res. Dev. Brain Res. 147, 135–141.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Mooney, S. M., and Miller, M. W. (2001) Effects of prenatal exposure to ethanol on the expression of bcl-2, bax and caspase 3 in the developing rat cerebral cortex and thalamus. Brain Res. 911, 71–81.

    Article  PubMed  CAS  Google Scholar 

  22. 22. McAlhaney, R. E. J, Miranda, R. C., Finnell, R. H., and West, J. R. (1999) Ethanol decreases Glial-Derived Neurotrophic Factor (GDNF) protein release but not mRNA expression and increases, G. D.NF-stimulated Shc phosphorylation in the developing cerebellum. Alcohol. Clin. Exp. Res. 23 1691–1697.

    Google Scholar 

  23. 23. Luo J, Miller, M. W. (1998) Growth factor-mediated neural proliferation: target of ethanol toxicity. Brain. Res. Rev. 27, 157–167.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Miller, M., Jacobs, J., and Yokoyama, R. (2003) Neg, a nerve growth factor-stimulated gene expressed by fetal neocortical neurons that is downregulated by ethanol. J. Comp. Neurol. 460, 212–222.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Maier, S. E., Cramer, J. A., West, J. R., and Sohrabji, F. (1999) Alcohol exposure during the first two trimesters equivalent alters granule cell number and neurotrophin expression in the developing rat olfactory bulb. J. Neurobiol. 41, 414–423.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Luo J, West, J. R., and Pantazis, N. J. (1996) Ethanol exposure reduces the density of the low-affinity nerve growth factor receptor (p75) on pheochromocytoma (PC12) cells. Brain Res.37, 34–44.

    Article  Google Scholar 

  27. 27. Dohrman, D. P., West, J. R., and Pantazis, N. J. (1997) Ethanol reduces expression of the nerve growth factor receptor, but not nerve growth factor protein levels in the neonatal rat cerebellum. Alcohol. Clin. Exp. Res. 21, 882–893.

    PubMed  CAS  Google Scholar 

  28. 28. Pantazis, N. J., Dohrman, D. P., Luo J, Thomas, J. D., Goodlett, C. R., and West, J. R. (1995) NMDA prevents alcohol-induced neuronal cell death of cerebellar granule cells in culture. Alcohol. Clin. Exp. Res. 19, 846–853.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Mooney, S. M., Siegenthaler, J. A., and Miller, M. W. (2004) Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex. Cereb Cortex 14, 1071–1080.

    Article  PubMed  Google Scholar 

  30. 30. Hsiao, S. H., DuBois, D. W., Miranda, R. C., and Frye, G. D. (2004) Critically timed ethanol exposure reduces, G. A.BAAR function on septal neurons developing in vivo but not in vitro. Brain Res. 1008, 69–80.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Pantazis, N. J., Dohrman, D. P., Goodlett, C. R., Cook, R. T., and West, J. R. (1993) Vulnerability of cerebellar granule cells to alcohol-induced cell death diminishes with time in culture. Alcohol. Clin. Exp. Res. 17, 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Pantazis, N. J., Dohrman, D. P., Luo J, Goodlett, C. R., and West, J. R. (1992) Alcohol reduces the number of pheochromocytoma (PC12) cells in culture. Alcohol, 9, 171–180.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Marcussen, B. L., Goodlett, C. R., Mahoney, J. C., and West, J. (1993) Developing rat Purkinje cells are more vulnerable to alcohol-induced depletion during differentiation than during neurogenesis. Alcohol, 11, 147–156.

    Article  Google Scholar 

  34. 34. Phillips, S. C., and Cragg, B. G. (1982) A change in susceptibility of rat cerebellar Purkinje cells to damage by alcohol during fetal, neonatal and adult life. Neuropathol. Appl. Neurobiol. 8, 441–454.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Caviness, V. S., Jr. (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon (3H)thymidine autoradiography., Brain Res. 256, 293–302.

    PubMed  Google Scholar 

  36. 36. Takahashi T, Goto T, Miyama S, Nowakowski, R. S., and Caviness, V. S. Jr. (1999) Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J. Neurosci. 19, 10357–10371.

    PubMed  CAS  Google Scholar 

  37. 37. Barnes, D. E., and Walker, D. W. (1981) Prenatal ethanol exposure permanently reduces the number of pyramidal neurons in rat hippocampus. Brain Res. 227, 333–340.

    PubMed  CAS  Google Scholar 

  38. 38. Miller, M. (1989) Effects of prenatal exposure to ethanol on neocortical development: II. Cell proliferation in the ventricular and subventricular zones of the rat. J. Comp. Neurol. 287, 326–338.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Miller, M. W. (1996) Limited ethanol exposure selectively alters the proliferation of precursor cells in the cerebral cortex. Alcohol. Clin. Exp. Res. 20, 139–143.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Miller, M. W., and Nowakowski, R. S. (1991) Effect of prenatal exposure to ethanol on the cell cycle kinetics and growth fraction in the proliferative zones of fetal rat cerebral cortex. Alcohol. Clin. Exp. Res. 15, 229–232.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Kotkoskie, L. A., and Norton, S. (1989) Morphometric analysis of developing rat cerebral cortex following acute prenatal ethanol exposure. Exp. Neurol. 106 283–288.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Kotkoskie, L. A., and Norton S (1988) Prenatal brain malformations following acute ethanol exposure in the rat. Alcohol. Clin. Exp. Res. 12, 831–836.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Kotkoskie, L. A., and Norton S (1989) Cerebral Cortical Morphology and Behavior in Rats Following Acute Prenatal Ethanol Exposure. Alcohol. Clin. Exp. Res. 13, 776–781.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Bayer, S., Altman, J. (1991) Neocortical Development. Raven Press, New York.

    Google Scholar 

  45. 45. Dai, M. S., Mantel, C. R., Xia, Z. B., Broxmeyer, H. E., and Lu, L. (2000) An expansion phase precedes terminal erythroid differentiation of hematopoietic progenitor cells from cord blood in vitro and is associated with up-regulation of cyclin E and cyclin-dependent kinase 2. Blood 96, 3985–3987.

    PubMed  CAS  Google Scholar 

  46. 46. Uylings H, Van Eden, C., Parnavelas, J., and Kalsbeck, A. (1990) The Prenatal and Postnatal Development of the Rat Cortex. In The Cerebrtal Cortex of the Rat (Kolb B., and Tees R. C., eds.). MIT Press, Cambridge. 35–76.

    Google Scholar 

  47. 47. Bittman K, Owens, D. F., Kriegstein, A. R., and LoTurco, J. J. (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J. Neurosci. 17, 7037–7044.

    PubMed  CAS  Google Scholar 

  48. 48. Tropepe V, Sibilia M, Ciruna, B. G., Rossant J, Wagner, E. F., and van der Kooy, D. (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Reznikov K, Acklin, S. E., and van der Kooy, D. (1997) Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages. Dev. Dyn. 210, 328–343.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Soriano, E., Dumesnil, N., Auladell, C., Cohen-Tannoudji, M., and Sotelo, C. (1995) Molecular heterogeneity of progenitors and radial migration in the developing cerebral cortex revealed by transgene expression. Proc. Natl. Acad. Sci. USA, 92, 11676–11680.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Anderson, S. A., Kaznowski, C. E., Horn C, Rubenstein, J. L., and McConnell, S. K. (2002) Distinct origins of neocortical projection neurons and interneurons in vivo. Cereb. Cortex, 12, 702–709.

    Article  PubMed  Google Scholar 

  52. 52. Desai, A. R., and McConnell, S. K. (2000) Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872.

    PubMed  CAS  Google Scholar 

  53. 53. Nery, S., Fishell, G., and Corbin, J. G. (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat. Neurosci. 5, 1279–1287.

    Article  PubMed  CAS  Google Scholar 

  54. 54. Mione, M. C., Danevic, C., Boardman, P., Harris, B., and Parnavelas, J. G. (1994) Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J. Neurosci. 14, 107–123.

    PubMed  CAS  Google Scholar 

  55. 55. Anderson S, Mione M, Yun K, and Rubenstein, J. L. (1999) Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Donoghue, M. J., and Rakic P (1999) Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb. Cortex 9, 586–600.

    Article  PubMed  CAS  Google Scholar 

  57. 57. Zijlstra M, Bix M, Simister, N. E., Loring, J. M., Raulet, D. H., and Jaenisch R (1990) Beta 2-microglobulin deficient mice lack, C. D.4–8+ cytolytic T cells. Nature, 344, 742–746.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Brazil, J. J., and Gupta, P. (2002) Constitutive expression of the Fas receptor and its ligand in adult human bone marrow: a regulatory feedback loop for the homeostatic control of hematopoiesis. Blood Cells Mol. Dis. 29, 94–103.

    Article  PubMed  Google Scholar 

  59. 59. Aasheim, H. C., Terstappen, L. W., and Logtenberg T (1997) Regulated expression of the Eph-related receptor tyrosine kinase Hek11 in early human B lymphopoiesis. Blood 90, 3613–3622.

    PubMed  CAS  Google Scholar 

  60. 60. Hirose, J., Kouro, T., Igarashi, H., Yokota, T., Sakaguchi, N., and Kincade, P. W. (2002) A developing picture of lymphopoiesis in bone marrow. Immunol Rev, 189, 28–40.

    Article  PubMed  CAS  Google Scholar 

  61. 61. Bunting, K. D. (2002) ABC Transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20, 11–20.

    Article  PubMed  CAS  Google Scholar 

  62. 62. Miraglia S, Godfrey W, Yin, A. H., Atkins K, Warnke R, Holden, J. T., Bray, R. A., Waller, E. K., and Buck, D. W. (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013–5021.

    PubMed  CAS  Google Scholar 

  63. 63. Yin, A. H., Miraglia S, Zanjani, E. D., Almeida-Porada G, Ogawa M, Leary, A. G., Olweus, J., Kearney, J., and Buck, D. W. (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90, 5002–5012.

    PubMed  CAS  Google Scholar 

  64. 64. Zhu, G., Chang, Y., Zuo, J., Dong, X., Zhang, M., Hu, G., and Fang, F. (2001) Fudenine, a C-terminal truncated rat homologue of mouse prominin, is blood glucose-regulated and can up-regulate the expression of, G. A.PDH. Biochem. Biophys. Res. Commun. 281, 951–956.

    Article  PubMed  CAS  Google Scholar 

  65. 65. Goodell, M. A. (2002) Multipotential stem cells and ‘side population’ cells. Cytotherapy 4, 507–508.

    Article  PubMed  CAS  Google Scholar 

  66. 66. Kim, M., and Morshead, C. M. (2003) Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. J. Neurosci. 23, 10703–10709.

    PubMed  CAS  Google Scholar 

  67. 67. Goodell, M. A., Brose K, Paradis G, Conner, A. S., and Mulligan, R. C. (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  68. 68. Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., Grupp, S. A., Sieff, C. A., Mulligan, R. C., and Johnson, R. P. (1997): Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of, C. D.34 antigen exist in multiple species. Nat. Med. 3, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  69. 69. Doyle, L. A., Yang W, Abruzzo, L. V., Krogmann T, Gao Y, Rishi, A. K., and Ross, D. D. (1998) A multidrug resistance transporter from human, M. C.F-7 breast cancer cells. Proc. Natl. Acad. Sci. USA, 95, 15665–15670.

    Article  PubMed  CAS  Google Scholar 

  70. 70. Alison, M. R. (2003) Tissue-based stem cells: ABC transporter proteins take centre stage. J. Pathol. 200, 547–550.

    Article  PubMed  CAS  Google Scholar 

  71. 71. Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp, J. G., and Cowan, K. (2002) The multidrug resistance transporter, A. B.CG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res. 8, 22–28.

    PubMed  CAS  Google Scholar 

  72. 72. Scharenberg, C. W., Harkey, M. A., and Torok-Storb, B. (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99, 507–512.

    Article  PubMed  CAS  Google Scholar 

  73. 73. Haubensak W, Attardo A, Denk W, and Huttner, W. B. (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA, 101, 3196–3201.

    Article  PubMed  CAS  Google Scholar 

  74. 74. Santillano, D. R., Kumar, L. S., Prock, T. L., Camarillo C, Tingling, J. D., and Miranda, R. C. (2005) Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors. BMC Neurosci. 6, 59.

    Article  PubMed  Google Scholar 

  75. 75. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A. R. (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 7, 136–144.

    Article  PubMed  CAS  Google Scholar 

  76. 76. Gotz M, Barde, Y. A. (2005) Radial glial cells defined and major intermediates between embryonic stem cells and, CNS neurons. Neuron 46, 369–372.

    Article  PubMed  Google Scholar 

  77. 77. Doetsch F, Caille I, Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  78. 78. Wade, S., Oommen, P., Conner, W., Earnest, D., and Miranda, R. (1999) Overlapping and divergent actions of estrogen and the neurogrophins on cell fate and p-53 dependent signal transduction in conditionally immortalized cerebral cortical neuroblasts. J. Neurosci. 15, 6994–7006.

    Google Scholar 

  79. 79. Gary, D. S., and Mattson, M. P. (2001) Integrin signaling via the, P. I.3-kinase-Akt pathway increases neuronal resistance to glutamate-induced apoptosis. J. Neurochem. 76, 1485–1496.

    Article  PubMed  CAS  Google Scholar 

  80. 80. Camarillo, C., Kumar, L. S., Bake, S., Sohrabji, F., and Miranda, R. C. (2007) Ethanol regulates angiogenic cytokines during neural development: Evidence from an in vitro model of mitogen-withdrawal induced cerebral cortical neuroepithelial differentiation. Alcohol. Clin. Exp. Res. 31, 324–335.

    Article  PubMed  CAS  Google Scholar 

  81. 81. Adachi, J., Mizoi, Y., Fukunaga, T., Ogawa, Y., Ueno, Y., and Imamichi H (1991) Degrees of alcohol intoxication in 117 hospitalized cases. J. Stud. Alcohol, 52, 448–453.

    PubMed  CAS  Google Scholar 

  82. 82. Perper, J. A., Twerski, A., and Wienand, J. W. (1986) Tolerance at high blood alcohol concentration: a study of 110 cases and review of the literature. J. Forensic Sci. 31, 212–221.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a grant from the NIH/NIAAA (#AA13440) to RCM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Miranda, R.C., Santillano, D.R., Camarillo, C., Dohrman, D. (2008). Modeling the Impact of Alcohol on Cortical Development in a Dish: Strategies from Mapping Neural Stem Cell Fate . In: Nagy, L.E. (eds) Alcohol. Methods in Molecular Biology™, vol 447. Humana Press. https://doi.org/10.1007/978-1-59745-242-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-242-7_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-906-2

  • Online ISBN: 978-1-59745-242-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics