Skip to main content

In Vivo siRNA Delivery to the Mouse Hypothalamus Shows a Role of the Co-Chaperone XAP2 in Regulating TRH Transcription

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 433))

Summary

RNA interference mediated by small interfering RNAs (siRNAs) is a powerful tool for evaluating gene function in vivo. In particular it should be able to provide tissue-specific and developmental stage-specific knockdown of target genes in physiological contexts. However, there are few demonstrations of its use on neuronal specific genes in vivo. We recently developed a cationic lipid-based approach to study gene function in a neuronal context. In particular, we applied it to study how the novel partner for TR\(\beta\)1, hepatitis virus B X-associated protein 2 (XAP2), a protein first identified as a co-chaperone protein, affects T3-transcriptional repression of the hypothalamic gene, TRH. The cationic lipid-based technique used, JetSI/DOPE, was previously shown to efficiently knockdown reporter gene mRNA in vivo. Using JetSI/DOPE to vectorize siRNA against XAP2 mRNA, we show that XAP2 is needed specifically for TR\(\beta\)1-mediated (but not TR\(\beta\)2) activation of hypothalamic TRH transcription. Thus, this cationic lipid-based siRNA strategy can effectively be used to reveal fine, tissue-specific and isoform-specific effects on neuronal gene transcription in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E, Hannak E, Kirkham M, Pichler S, Flohrs K, Goessen A, Leidel S, Alleaume AM, Martin C, Ozlu N, Bork P, Hyman AA (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336.

    Article  CAS  PubMed  Google Scholar 

  2. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  3. Hannon GJ (2002) RNA interference. Nature 418, 244–251.

    Article  CAS  PubMed  Google Scholar 

  4. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  6. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457–467.

    Article  CAS  PubMed  Google Scholar 

  7. Taylor DR, Shi ST, Romano PR, Barber GN, Lai mM (1999) Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285, 107–110.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C, Silverman RH (1997) Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J 16, 6355–6363.

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  10. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418, 38–39.

    Article  CAS  PubMed  Google Scholar 

  11. Song E, Lee SK, Wang J, Ince N, Ouyang N, min J, Chen J, Shankar P, Lieberman J (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9, 347–351.

    Article  CAS  PubMed  Google Scholar 

  12. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32, e49.

    Article  PubMed  Google Scholar 

  13. Hassani Z, Lemkine GF, Erbacher P, Palmier K, Alfama G, Giovannangeli C, Behr JP, Demeneix BA (2005) Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J Gene Med 7, 198–207.

    Article  CAS  PubMed  Google Scholar 

  14. Guissouma H, Ghorbel MT, Seugnet I, Ouatas T, Demeneix BA (1998) Physiological regulation of hypothalamic TRH transcription in vivo is T3 receptor isoform specific. FASEB J 12, 1755–1764.

    CAS  PubMed  Google Scholar 

  15. Guissouma H, Dupre SM, Becker N, Jeannin E, Seugnet I, Desvergne B, Demeneix BA (2002) Feedback on hypothalamic TRH transcription is dependent on thyroid hormone receptor N terminus. Mol Endocrinol 16, 1652–1666.

    Article  CAS  PubMed  Google Scholar 

  16. Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE (2001) Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest 107, 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  17. Dupre SM, Guissouma H, Flamant F, Seugnet I, Scanlan TS, Baxter JD, Samarut J, Demeneix BA, Becker N (2004) Both thyroid hormone receptor (TR)beta 1 and TR beta 2 isoforms contribute to the regulation of hypothalamic thyrotropin-releasing hormone. Endocrinology 145, 2337–2345.

    Article  CAS  PubMed  Google Scholar 

  18. Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, Curran T (1996) Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J 15, 3006–3015.

    CAS  PubMed  Google Scholar 

  19. Guissouma H, Froidevaux MS, Hassani Z, Demeneix BA (2006) In vivo siRNA delivery to the mouse hypothalamus confirms distinct roles of TR beta isoforms in regulating TRH transcription. Neurosci Lett 406, 240–243.

    Article  CAS  PubMed  Google Scholar 

  20. Froidevaux MS, Berg P, Seugnet I, Decherf S, Becker N, Sachs LM, Bilesimo P, Nygard M, Pongratz I, Demeneix BA (2006) The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo. EMBO Rep 7, 1035–1039.

    Article  PubMed  Google Scholar 

  21. Carver LA, Bradfield CA (1997) Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J Biol Chem 272, 11452–11456.

    Article  CAS  PubMed  Google Scholar 

  22. Ma Q, Whitlock JP, Jr. (1997) A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Chem 272, 8878–8884.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH (1998) Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol Cell Biol 18, 978–988.

    CAS  PubMed  Google Scholar 

  24. Kazlauskas A, Sundstrom S, Poellinger L, Pongratz I (2001) The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol Cell Biol 21, 2594–2607.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Decherf, S., Hassani, Z., Demeneix, B.A. (2008). In Vivo siRNA Delivery to the Mouse Hypothalamus Shows a Role of the Co-Chaperone XAP2 in Regulating TRH Transcription. In: Gene Therapy Protocols. Methods in Molecular Biology™, vol 433. Humana Press. https://doi.org/10.1007/978-1-59745-237-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-237-3_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-903-1

  • Online ISBN: 978-1-59745-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics