Transdermal Drug Delivery Systems: Skin Perturbation Devices

  • Marc B. Brown
  • Matthew J. Traynor
  • Gary P. Martin
  • Franklin K. Akomeah
Part of the Methods in Molecular Biology™ book series (MIMB, volume 437)

Abstract

Human skin serves a protective function by imposing physicochemical limitations to the type of permeant that can traverse the barrier. For a drug to be delivered passively via the skin it needs to have a suitable lipophilicity and a molecular weight < 500 Da. The number of commercially available products based on transdermal or dermal delivery has been limited by these requirements. In recent years various passive and active strategies have emerged to optimize delivery. The passive approach entails the optimization of formulation or drug carrying vehicle to increase skin permeability. However, passive methods do not greatly improve the permeation of drugs with molecular weights >500 Da. In contrast, active methods, normally involving physical or mechanical methods of enhancing delivery, have been shown to be generally superior. The delivery of drugs of differing lipophilicity and molecular weight, including proteins, peptides and oligonucletides, has been shown to be improved by active methods such as iontophoresis, electroporation, mechanical perturbation and other energy-related techniques such as ultrasound and needleless injection. This chapter details one practical example of an active skin abrasion device to demonstrate the success of such active methods. The in vitro permeation of acyclovir through human epidermal membrane using a rotating brush abrasion device was compared with acyclovir delivery using iontophoresis. It was found that application of brush treatment for 10 s at a pressure of 300 N m−2 was comparable to 10 min of iontophoresis. The observed enhancement of permeability observed using the rotating brush was a result of disruption of the cells of the stratum corneum, causing a reduction of the barrier function of the skin. However, for these novel delivery methods to succeed and compete with those already on the market, the prime issues that require consideration include device design and safety, efficacy, ease of handling, and cost-effectiveness. This chapter provides a detailed review of the next generation of active delivery technologies.

Keywords

Dermal Drug delivery Permeability Skin Transdermal 

References

  1. 1.
    1. Elias, P.M. (1983) “Epidermal lipids, barrier function and desquamation”, J. Invest. Dermatol. 80, 44–49.CrossRefGoogle Scholar
  2. 2.
    2. Pirot, F., Kalia, Y.N., Stinchcomb, A.L., Keating, G., Bunge, A. Guy, R.H. (1997) “Characterization of the permeability barrier of human skin in vivo. Proc. Nat. Acad. Sci. U.S.A. 94, 1562–1567.CrossRefGoogle Scholar
  3. 3.
    3. Scheuplein, R.J. Blank, I.H. (1971) “Permeability of the skin”, Physiol. Rev. 51, 702–747.Google Scholar
  4. 4.
    4. Flynn, G., Yalkowsky, S.H. Roseman, T.J. (1974) “Mass transport phenomena and models”, J. Pharm. Sci. 63, 479–510.CrossRefGoogle Scholar
  5. 5.
    5. Cleary, G.W. (1993). “Transdermal delivery systems; a medical rationale”, In: Shah, V.P. and Maibach, H.I., eds., Topical drug bioavailability, bioequivalence and penetration. Plenum, New York, pp. 17–68.Google Scholar
  6. 6.
    6. Henzel, M.R. Loomba, P.K. (2003) “Transdermal delivery of sex steroids for hormone replacement therapy and contraception. A review of principles and practice”. J. Reprod. Med. 48, 525–540.Google Scholar
  7. 7.
    7. Kormic, C.A., Santiago- Palma, J., Moryll, N., Payne, R. Obbens, E.A. (2003) “Benefit-risk assessment of transdermal fentanyl for the treatment of chronic pain”. Drug Saf. 26, 951–973.CrossRefGoogle Scholar
  8. 8.
    8. Varvel, J.R., Shafer, S.L., Hwang, S.S., Coen, P.A. Stanski, D.R. (1989) “Absorption characteristics of transdermally administered fentanyl”. Anaesthesiology. 70, 928.CrossRefGoogle Scholar
  9. 9.
    9. Yang, S.I., Park, H.Y., Lee. S.H., Lee, S.J., Han, O.Y., Lim, S.C., Jang, C.G., Lee, W.S., Shin, H.Y., Kim, J.J. Lee, S.Y, (2004) “Transdermal eperisone elicits more potent and longer-lasting muscle relaxation than oral operisone”. Pharmacology. 71, 150–156.CrossRefGoogle Scholar
  10. 10.
    10. Cramer, M.P. Saks, S.R. (1994) “Translating safety, efficacy and compliance into economic value for controlled release dosage forms”. Pharmacoeconomics. 5, 482–504.CrossRefGoogle Scholar
  11. 11.
    11. Payne, R., Mathias, S.D., Pasta, D.J., Wanke, L.A., Williams, R. Mahmoud, R. (1998) “Quality of life and cancer pain: satisfaction and side effects with transdermal fentanyl versus oral morphine”. J. Clin. Oncol. 16, 1588–1593.Google Scholar
  12. 12.
    12. Jarupanich, T., Lamlertkittikul, S. Chandeying, V. (2003) “Efficacy, safety and acceptability of a seven-day, transdermal estradiol patch for estrogen replacement therapy”. J. Med. Assoc. Thai. 86, 836–845.Google Scholar
  13. 13.
    13. Archer, D.F., Cullins, V., Creasy, D.W. Fisher, A.C. (2004) “The impact of improved compliance with a weekly contraceptive transdermal system (Ortho Evra) on contraceptive efficacy”. Contraception. 69, 189–195.CrossRefGoogle Scholar
  14. 14.
    14. Long, C. (2002) “Common skin disorders and their topical treatment”. In: Walters, K.A., ed., Dermatological and transdermal formulations. Marcel Dekker, New York, pp. 41–60.Google Scholar
  15. 15.
    15. Whittington, R. Faulds, D. (1994) “Hormone replacement therapy: I. A pharmacoeconomic appraisal of its therapeutic use in menopausal symptoms and urogenital estrogen deficiency”. Pharmacoeconomics. 5, 419–445. Review. Erratum in: Pharmacoeconomics (1995), 8, 244.CrossRefGoogle Scholar
  16. 16.
    16. Frei, A., Andersen, S., Hole, P. Jensen, N.H. (2003) “A one year health economic model comparing transdermal fentanyl with sustained-release morphine in the treatment of chronic non-cancer pain”. J. Pain Palliat. Care. Pharmacother. 17, 5–26.Google Scholar
  17. 17.
    17. Bos, J.D. Meinardi, M.M. (2000) “The 500 Dalton rule for skin penetration of chemical compounds and drugs”. Exp. Dermatol. 9, 165–169.CrossRefGoogle Scholar
  18. 18.
    18. Yano, T., Nagakawa, A., Tsuji, M. Noda, K. (1986) “Skin permeability of various non-steroidal anti-inflammatory drugs in man”. Life Sci. 39, 1043–1050.CrossRefGoogle Scholar
  19. 19.
    19. Southwell, S., Barry, B.W. Woodford, R. (1984) “Variations in permeability of human skin within and between specimens”. Int. J. Pharm. 18, 299–309.CrossRefGoogle Scholar
  20. 20.
    20. Larsen, R.H., Nielsen, F., Søresen, J.A., Nielsen, J.B. (2003) “Dermal penetration of fentanyl: inter- and intraindividual variations”. Pharmcol. Toxicol. 93, 244–248.CrossRefGoogle Scholar
  21. 21.
    21. Steinsträsser, I. Merkle, H.P. (1995) “Dermal metabolism of topically applied drugs: pathways and models reconsidered”. Pharm. Acta. Helv. 70, 3–24.CrossRefGoogle Scholar
  22. 22.
    22. Hogan, D.J. Maibach, H.I. (1990) “Adverse dermatologic reactions to transdermal drug delivery systems”. J. Am. Acad. Dermatol. 22, 811–814.CrossRefGoogle Scholar
  23. 23.
    23. Carmichael, A.J. (1994) “Skin sensitivity and transdermal drug delivery. A review of the problem”. Drug Saf. 10, 151–159.CrossRefGoogle Scholar
  24. 24.
    24. Toole, J., Silagy, S., Maric, A., Fath, B., Quebe- Fehling, E., Ibarra de Palacios, P., Laurin, L. Giguere, M. (2002) “Evaluation of irritation and sensitisation of two 50 microg/day oestrogen patches”. Maturitas. 43, 257–263.CrossRefGoogle Scholar
  25. 25.
    25. Murphy, M. Carmichael, A.J. (2000) “Transdermal drug delivery systems and skin sensitivity reactions, Incidence and management”. Am. J. Clin. Dermatol. 1, 361–368.CrossRefGoogle Scholar
  26. 26.
    26. Williams, A.C. Barry, B.W. (2004). “Penetration enhancers”, Adv. Drug Deliv. Rev. 56, 603–618.CrossRefGoogle Scholar
  27. 27.
    27. Pellet, M., Raghavan, S.L., Hadgraft, J. Davis, A.F. (2003) “The application of supersaturated systems to percutaneous drug delivery”. In: Guy, R.H. and Hadgraft, J., eds., Transdermal drug delivery. Marcel Dekker, Marcel Dekker, New York, pp. 305–326.Google Scholar
  28. 28.
    28. Tsai, J.C., Guy, R.H., Thornfeldt, C.R., Gao, W.N., Feingold, K.R. Elias, P.M. (1996) “Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors”, J. Pharm. Sci. 85, 643–648.CrossRefGoogle Scholar
  29. 29.
    Elias, P.M., Feingold, K.R., Tsai, J., Thornfeldt, C. Menon, G. (2003) “Metabolic approach to transdermal drug delivery”. In: Guy, R.H. and Hadgraft, J., eds., Transdermal drug delivery. Marcel Dekker, pp. 285–304.Google Scholar
  30. 30.
    30. Schreier, H. Bouwstra, J. (1994) “Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery”, J.Control. Release. 30, 1–15.CrossRefGoogle Scholar
  31. 31.
    31. Cevc, G. (1996) “Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery”. Crit. Rev. Ther. Drug Carrier Syst. 13(3–4), 257–388.Google Scholar
  32. 32.
    32. Cevc, G. (2003). “Transferosomes: innovative transdermal drug carriers”. In: Rathbone, M.J., Hadgraft, J. and Roberts, M.S., eds., Modified release drug delivery technology. Marcel Dekker, New York, pp. 533–560.Google Scholar
  33. 33.
    33. Godin, B. Touitou, E. (2003) “Ethosomes: new prospects in transdermal delivery”, Crit. Rev. Ther. Drug. Carrier Syst. 20, 63–102.CrossRefGoogle Scholar
  34. 34.
    34. Helmstädter, A. (2001) “The history of electrically assisted transdermal drug delivery (iontophoresis)”, Pharmazie. 56, 583–587.Google Scholar
  35. 35.
    35. Banga, A.K., Bose, S. Ghosh, T.K. (1999) “Iontophoresis and electroporation: comparisons and contrasts”, Int. J. Pharm. 179, 1–19.CrossRefGoogle Scholar
  36. 36.
    36. Weaver, J.C., Vaughan, T.E. Chizmadzhev, Y.A. (1999) “Theory of electrical creation of aqueous pathways across skin transport barriers”, Adv. Drug Deliv. Rev. 35, 21–39.CrossRefGoogle Scholar
  37. 37.
    37. Denet, A.R., Vanbever, R. Préat, V. (2004) “Skin electroporation for topical and transdermal delivery”, Adv. Drug Deliv. Rev. 56, 659–674.CrossRefGoogle Scholar
  38. 38.
    38. Pliquett, U., Vaughan, T. Weaver, J. (1999) “Apparatus and method for electroporation of tissue”. US Pat. 5,983,131.Google Scholar
  39. 39.
    39. Zhang, L., Hofmann, G.A. Rabussay, D. (2001) “Electrically assisted transdermal method and apparatus for treatment of erectile dysfunction”, US Pat. 6,266,560.Google Scholar
  40. 40.
    Sugibayash, K., Kubo, H. Mori, K. (2002) “Device and electrode for electroporation”. Patent WO 01/28624.Google Scholar
  41. 41.
    41. Wong, T.W., Chen, C.H., Huang, C.C., Lin, C.D. Hui, S.W. (2006) “Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery”. J. Control. Release. 110(3), 557–565.CrossRefGoogle Scholar
  42. 42.
    42. Wang, Y., Allen, L.V., Li, C. Tu, Y. (1993) “Iontophoresis of hydrocortisone across hairless mouse skin: investigation of skin alteration”, J. Pharm. Sci. 82, 1140–1144.CrossRefGoogle Scholar
  43. 43.
    43. Turner, N.G., Kalia, Y.N. Guy, R.H. (1997) “The effect of current on skin barrier function in vivo: recovery kinetics post iontophoresis”, Pharm. Res. 14, 1252–1255.CrossRefGoogle Scholar
  44. 44.
    44. Banga, A.K. (1998). “Electrically assisted transdermal and topical drug delivery”. Taylor and Francis, London.Google Scholar
  45. 45.
    45. Guy, R.H., Kalia, Y.N., Delgado-Charro, M.B., Merino, V., López, A. Marro, D. (2000) “Iontophoresis: electrorepulsion and electroosmosis”. J. Control. Release. 64, 129–132.CrossRefGoogle Scholar
  46. 46.
    46. Subramony, J.A., Sharma, A. Phipps, J.B. (2006) “Microprocessor controlled transdermal drug delivery”. Int. J. Pharm. 317(1), 1–6.CrossRefGoogle Scholar
  47. 47.
    47. Tyle, P. (1986) “Iontophoretic devices for drug delivery”. Pharm. Res. 3, 318–326.CrossRefGoogle Scholar
  48. 48.
    48. Kalia, Y.N., Naik, A., Garrison, J. Guy, R.H. (2004) “Iontophoretic drug delivery”. Adv. Drug Del. Rev. 56, 619–658.CrossRefGoogle Scholar
  49. 49.
    49. Priya, B., Rashmi, T. Bozena, M. (2006) “Transdermal iontophoresis”. Expert Opin. Drug Deliv. 3(1), 127–138.CrossRefGoogle Scholar
  50. 50.
    50. Bommannan, D.B., Tamada, J., Leung, L. Potts, R.O. (1994) “Effects of electroporation on transdermal iontophoretic delivery of luteinizing-hormone-releasing hormone (LHRH) in vitro”. Pharm. Res. 11, 1809–1814.CrossRefGoogle Scholar
  51. 51.
    51. Chang, S.L., Hofmann, G.A., Zhang, L., Deftos, L.J. Banga, A.K. (2000) “The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones”. J. Control. Release. 66, 127–133.CrossRefGoogle Scholar
  52. 52.
    52. Badkar, A.V. Banga, A.K. (2002) “Electrically enhanced transdermal delivery of a macromolecule”. J. Pharm. Pharmacol. 54, 907–912.CrossRefGoogle Scholar
  53. 53.
    53. Kanikkannan, N. (2002) “Iontophoresis based transdermal delivery systems”. Biodrugs. 16, 339–347.CrossRefGoogle Scholar
  54. 54.
    54. Mitragotri, S., Blankschtein, D. Langer, R. (1996) “Transdermal delivery using low frequency sonophoresis”, Pharm. Res. 13, 411–420.CrossRefGoogle Scholar
  55. 55.
    55. Mitragotri, S. (2004) “Low frequency sonophoresis”, Adv. Drug. Deliv. Rev. 56, 589–601.CrossRefGoogle Scholar
  56. 56.
    56. Mitragotri, S., Blankschtein, D. Langer, R. (1995) “Ultrasound mediated transdermal protein delivery”, Science. 269, 850–853.CrossRefGoogle Scholar
  57. 57.
    57. Liu, H., Li, S., Pan, W., Wang, Y., Han, F. Yao, H. (2006) “Investigation into the potential of low-frequency ultrasound facilitated topical delivery of Cyclosporin A”. Int. J. Pharm. 326(1–2), 32–8.CrossRefGoogle Scholar
  58. 58.
    Kost, J., Katz, N., Shapiro, D., Herrmann, T., Kellog, S., Warner, N. Custer, L. (2003) “Ultrasound skin permeation pre-treatment to accelerate the onset of topical anaesthesia”. Proc. Int. Symp. Bioact. Mater. Google Scholar
  59. 59.
    59. Tachibana, K. (1992) “Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure”. Pharm. Res. 9, 952–954.CrossRefGoogle Scholar
  60. 60.
    60. Boucaud, A., Garrigue, M.A., Machet, L., Vaillant, L. Patat, F. (2002) “Effect of sonication parameters on transdermal delivery of insulin to hairless rats”, J. Control. Release. 81, 113–119.CrossRefGoogle Scholar
  61. 61.
    61. Smith, N.B., Lee, S., Maione, E., Roy, R., McElligott, S. Shung, K.K. (2003) “Ultrasound mediated transdermal transport of insulin in vitro through human skin using novel transducer designs”, Ultrasound. Med. Biol. 29, 311–317.CrossRefGoogle Scholar
  62. 62.
    62. Jacques, S.L., McAuliffe, D.J., Blank, I.H. Parrish, J.A. (1988) “Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport”. US Pat 4, 775, 361.Google Scholar
  63. 63.
    63. Lee, W.R., Shen, S.C., Lai, H.H., Hu, C.H. Fang, J.Y. (2001) “Transdermal drug delivery enhanced and controlled by erbium: YAG laser: a comparative study of lipophilic and hydrophilic drugs”. J. Control. Release. 75, 155–166.CrossRefGoogle Scholar
  64. 64.
    64. Lee, W.R., Shen, S.C., Wang, K.H., Hu, C.H. Fang, J.Y. (2003) “Lasers and microdermabrasion enhance and control topical delivery of vitamin C”. J. Invest. Dermatol. 121, 1118–1125.CrossRefGoogle Scholar
  65. 65.
    65. Baron, E.D., Harris, L., Redpath, W.S., Shapiro, H., Herzel, F., Morley, G., Bar, O.D. Stevens, S.R. (2003) “Laser assisted penetration of topical anaesthesia”. Arch. Dermatol. 139, 1288–1290.CrossRefGoogle Scholar
  66. 66.
    66. Lee, S., McAuliffe, D.J., Flotte, T.J., Kollias, N. Doukas, A.G. (1998) “Photomechanical transcutaneous delivery of macromolecules”. J. Invest. Dermatol. 111, 925–929.CrossRefGoogle Scholar
  67. 67.
    67. Lee, S., Kollias, N., McAuliffe, D.J., Flotte, T.J. Doukas, A.G. (1999) “Topical drug delivery in humans with a single photomechanical wave”. Pharm. Res. 16, 514–518.CrossRefGoogle Scholar
  68. 68.
    68. Doukas, A.G., Kollias, N. (2004) “Transdermal delivery with a pressure wave”. Adv. Drug. Deliv. Rev. 56, 559–579.CrossRefGoogle Scholar
  69. 69.
    69. Mulholland, S.E., Lee, S., McAuliffe, D.J. Doukas, A.G. (1999) “Cell loading with laser generated stress waves: the role of stress gradient”. Pharm. Res. 16, 514–518.CrossRefGoogle Scholar
  70. 70.
    70. Lee, S., McAuliffe, D.J., Flotte, T.J., Kollias, N. Doukas, A.G. (2001) “Permeabilization and recovery of the stratum corneum in vivo: the synergy of photomechanical waves and sodium lauryl sulphate”. Lasers Surg. Med. 29, 145–150.CrossRefGoogle Scholar
  71. 71.
    71. Lee, S., McAuliffe, D.J., Mulholland, S.E. Doukas, A.G. (2001) “Photomechanical transdermal delivery; the effect of laser confinement”. Lasers Surg. Med. 28, 344–347.CrossRefGoogle Scholar
  72. 72.
    72. Sintov, A., Krymbeck, I., Daniel, D., Hannan, T., Sohn, Z. Levin, G. (2003) “Radiofrequency microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs”. J. Control. Release. 89, 311–320.CrossRefGoogle Scholar
  73. 73.
    73. Murthy, S.N. (1999) “Magnetophoresis: an approach to enhance transdermal drug diffusion”. Pharmazie. 54, 377–379.Google Scholar
  74. 74.
    74. Murthy, S.N. Hiremath, R.R. (2001) “Physical and chemical permeation enhancers in transdermal delivery of terbutaline sulphate”. AAPS PharmSciTech. 2, 1–5.CrossRefGoogle Scholar
  75. 75.
    75. Blank, I.H., Scheuplein, R.J. Macfarlane, D.J. (1967) “Mechanism of percutaneous absorption: III. The effect of temperature on the transport of non-electrolytes across the skin”. J. Invest. Dermatol. 49, 582–589.CrossRefGoogle Scholar
  76. 76.
    76. Clarys, P., Alewaeters, K., Jadoul, A., Barel, A., Mandas, O.R. Preat, V. (1998) “In vitro percutaneous penetration through hairless rat skin: influence of temperature, vehicle and penetration enhancers”. Eur. J. Pharm. Biopharm. 46, 279–283.CrossRefGoogle Scholar
  77. 77.
    77. Akomeah, F., Nazir, T., Martin, G.P. Brown, M.B. (2004) “Effect of heat on the percutaneous absorption and skin retention of 3 model penetrants”. Eur. J. Pharm. Sci. 21, 337–345.CrossRefGoogle Scholar
  78. 78.
    78. Ogiso, T., Hirota, T., Masahiro, I., Hino, T. Tadatoshi, T. (1998) “Effect of temperature on percutaneous absorption of terodiline and relationship between penetration and fluidity of stratum corneum lipids”. Int. J. Pharm. 176, 63–72.CrossRefGoogle Scholar
  79. 79.
    79. Klemsdal, T.O., Gjesdal, K. Bredesen, J.E. (1992) “Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin”. Eur. J. Clin. Pharmacol. 43, 625–628.CrossRefGoogle Scholar
  80. 80.
    80. Hull, W. (2002) “Heat enhanced transdermal drug delivery: a survey paper”. J. Appl. Res. Clin. Exp. Ther. 2, 1–9.Google Scholar
  81. 81.
    81. Shomaker, T.S., Zhang, J. Ashburn, M.A. (2001) “A pilot study assessing the impact of heat on transdermal delivery of testosterone”. J. Clin. Pharmacol. 41, 677–682.CrossRefGoogle Scholar
  82. 82.
    82. Ashburn, M.A., Ogden, L.L., Zhan, J., Love, G. Bastsa, S.V. (2003) “Pharmacokinetics of transdermal fentanyl delivered with and without controlled heat”. J. Pain. 4, 291–297.CrossRefGoogle Scholar
  83. 83.
    83. Stanley, T., Hull, W. Rigby, L. (2001) “Transdermal drug patch with attached pocket for controlled heating device”. US Pat. 6,261,595.Google Scholar
  84. 84.
    84. Shomaker, T.S., Zhang, J., Love. G., Basta, S. Ashburn, M.A. (2000) “Evaluating skin anaesthesia after administration of a local anaesthetic system consisting of an S-Caine™ patch and a controlled heat-aided drug delivery (CHADD™) patch in volunteers”. Clin. J. Pain. 16, 200–204.CrossRefGoogle Scholar
  85. 85.
    Kuleza, J. Dvoretzky, I. (2001) “Multipurpose drug and heat therapy system”. Patent WO 01/58408.Google Scholar
  86. 86.
    86. Paranjape, M., Garra, J., Brida, S., Schneioder, T., White, R. Currie, J. (2003) “A PDMS dermal patch for non-intrusive transdermal glucose sensing”. Sens Actuators A. 104, 195–204.CrossRefGoogle Scholar
  87. 87.
    87. Kasting, G.B. Bowman, L.A. (1990) “Electrical analysis of fresh excised human skin: A comparison with frozen skin”. Pharm. Res. 7, 1141–1146.CrossRefGoogle Scholar
  88. 88.
    88. Yazdanian, M. (1994) “Effect of freezing on cattle skin permeability”. Int. J. Pharm. 103, 93–96.CrossRefGoogle Scholar
  89. 89.
    89. Babu, R.J., Kanikkannan, N., Kikwai, L., Ortega, C., Andega, S., Ball, K., Yim, S. Singh, M. (2003) “The influence of various methods of cold storage on the permeation of melatonin and nimesulide”. J. Control. Release. 86, 49–57.CrossRefGoogle Scholar
  90. 90.
    90. Gerstel, M.S. Place, V.A. (1976) “Drug delivery device”. US Pat. 3,964,482.Google Scholar
  91. 91.
    91. Trautman, J., Cormier, M.J., Kim, H.L. Zuck, M.G. (2000) “Device for enhancing transdermal agent flux”. US Pat. 6,083,196.Google Scholar
  92. 92.
    92. Trautman, J., Wong, P.S., Daddona, P.E., Kim, H.L. Zuck, M.G. (2001) “Device for enhancing transdermal agent flux”. US Pat. 6,322,808 B1.Google Scholar
  93. 93.
    93. Yuzhakov, V.V., Sherman, F.F., Owens, G.D. Gartstein, V. (2001) “Apparatus and method for using an intracutaneous microneedle array”. US Pat. 6,256,533.Google Scholar
  94. 94.
    94. Lin, W.Q., Cormier, M., Samiee, A., Griffin, A., Johnson, B., Teng, C.L., Hardee, G.E. Daddona, P. (2001) “Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux®) Technology”. Pharm. Res. 18, 1789–1793.CrossRefGoogle Scholar
  95. 95.
    95. Matriano, J.A., Cormier, M., Johnson, J., Young, W.A., Buttery, M., Nyam, K. Daddona, P. (2002) “Macroflux Technology: a new and efficient approach for intracutaneous immunization”. Pharm. Res. 19; 63–70.CrossRefGoogle Scholar
  96. 96.
    96. Kaushik, S., Hord, A.H., Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G. Prausnitz, M.R. (2001) “Lack of pain associated with microfabricated microneedles”. Anesth. Analg. 92, 502–504.CrossRefGoogle Scholar
  97. 97.
    97. Prausnitz, M.R. (2004) “Microneedles for transdermal drug delivery”. Adv. Drug Deliv. Rev. 56, 581–587.CrossRefGoogle Scholar
  98. 98.
    98. Martanto, W., Davis, S.P., Holiday, N.R., Wang, J., Gill, H.S., Prausnitz, M.R. (2004) “Transdermal delivery of insulin using microneedles in vivo”. Pharm. Res. 21, 947–952.CrossRefGoogle Scholar
  99. 99.
    99. Giudice, E.L. Campbell, J.D. (2006) “Needle-free vaccine delivery”. Adv. Drug Deliv. Rev. 58(1), 68–89.CrossRefGoogle Scholar
  100. 100.
    100. Allen, M.G., Prausnitz, M.R., McAllister, D.V. Cross, F.P.M. (2002) “Microneedle devices and methods of manufacture and use thereof”. US Pat. 6,334,856.Google Scholar
  101. 101.
    101. Godshall, N. Anderson, R. (1999) “Method and apparatus for disruption of the epidermis”. US Pat. 5,879,326.Google Scholar
  102. 102.
    Godshall, N. (1996) “Micromechanical patch for enhancing delivery of compounds through the skin”. Patent WO 9637256.Google Scholar
  103. 103.
    Kamen, D. (1998) “System for delivery of drugs by transport”. Patent WO 98/11937.Google Scholar
  104. 104.
    104. Jang, K. (1998) “Skin perforating apparatus for transdermal medication”. US Pat. 5,843,114.Google Scholar
  105. 105.
    Lin, W.Q., Theeuwes, F. Cormier, M. (2001) “Device for enhancing transdermal flux of sampled agents”. Patent WO 01/43643.Google Scholar
  106. 106.
    106. Muddle, A.G., Longridge, D.J., Sweeney, P.A., Burkoth, T.L. Bellhouse, B.J. (1997) “Transdermal delivery of testosterone to conscious rabbits using powderject (R): a supersonic powder delivery system”. Proc. Int. Symp. Control. Release. Bioact. Mat. 24, 713.Google Scholar
  107. 107.
    107. Longbridge, D.J., Sweeney, P.A., Burkoth, T.L. Bellhouse, B.J. (1998) “Effects of particle size and cylinder pressure on dermal powderject® delivery of testosterone to conscious rabbits”. Proc. Int. Symp. Control. Rel Bioact. Mat. 25, 964.Google Scholar
  108. 108.
    108. Burkoth, T.L., Bellhouse, B.J., Hewson, G., Longridge, D.J., Muddle, A.J. Sarphie, D.J. (1999) “Transdermal and transmucosal powdered delivery”. Crit. Rev. Ther. Drug Carrier Syst. 16, 331–384.Google Scholar
  109. 109.
    109. Bernabei, G.F., “Method and apparatus for skin absorption enhancement and transdermal drug delivery”. US Pat. 7,083,580.Google Scholar
  110. 110.
    110. Svedman, P. (1995) “Transdermal perfusion of fluids”. US Pat. 5,441,490.Google Scholar
  111. 111.
    111. Svedman, P., Lundin, S., Höglund, P., Hammarlund, C., Malmros, C. Panzar, N. (1996) “Passive drug diffusion via standardized skin mini-erosion; methodological aspects and clinical findings with new device”. Pharm. Res. 13, 1354–1359.CrossRefGoogle Scholar
  112. 112.
    112. Svedman, P. Svedman, C. (1998) “Skin mini-erosion sampling technique: feasibility study with regard to serial glucose measurement”. Pharm. Res. 15, 883–888.CrossRefGoogle Scholar
  113. 113.
    113. Down, J. Harvey, N.G. (2003) “Minimally invasive systems for transdermal drug delivery”. In: Guy, R.H. and Hadgraft, J., eds., Transdermal drug delivery. Marcel Dekker, New York, pp. 327–360.Google Scholar
  114. 114.
    114. Treffel, P., Panisset, F., Humbert, P., Remoussenard, O., Bechtel, Y. Agache, P. (1993) “Effect of pressure on in vitro percutaneous absorption of caffeine”. Acta. Derm. Venereol (Stockh). 73, 200–202.Google Scholar
  115. 115.
    Cormier, M., Trautman, J., Kim, H.L., Samiee, A.P., Ermans, A.P., Edwards, B.P., Lim, W.L. Poutiatine, A. (2001) “Skin treatment apparatus for sustained transdermal drug delivery”. Patent WO 01/41864 A1.Google Scholar
  116. 116.
    Neukermans, A.P., Poutiatine, A.I., Sendelbeck, S., Trautman, J., Wai, L.L., Edwards, B.P., Eng, K.P., Gyory, J.R., Hyunok, K.L., Lin, W.Q. Cormier M (2001) “Device and method for enhancing microprotrusion skin piercing”. Patent WO 0141863.Google Scholar
  117. 117.
    Mikszta, J.A., Britingham, J.M., Alarcon, J., Pettis, R.J. Dekker, J.P. (2001) “Applicator having abraded surface coated with substance to be applied”. Patent WO 01/89622 A1.Google Scholar
  118. 118.
    118. Mikszta, J.A., Britingham, J.M., Alarcon, J., Pettis, R.J. Dekker, J.P. (2003) “Topical delivery of vaccines”. US Pat. 6,595,947 B1.Google Scholar
  119. 119.
    119. Lee, W.R., Tsai, R.Y., Fang, C.L., Liu, C.J., Hu, C.H. Fang, J.Y. (2006) “Microdermabrasion as a novel tool to enhance drug delivery via the skin: an animal study”. Dermatol. Surg. 32(8), 1013–1022.CrossRefGoogle Scholar
  120. 120.
    120. Barry, B.W. (2001) “Novel mechanisms and devices to enable successful transdermal drug delivery”. Eur. J. Pharm. Sci. 14, 101–114.CrossRefGoogle Scholar
  121. 121.
    Sage, B.H. Bock, C.R. (2003) “Method and device for abrading skin”. US Pat. 2003/199811.Google Scholar
  122. 122.
    Sage, B.H. Bock, C.R. (2003) “Device for abrading skin”. Patent EP 1,086,719 A1.Google Scholar
  123. 123.
    123. Seth, A.K., Misrad, A., Umrigar, D. Vora, N. (2003) “Role of acyclovir gel in herpes simplex: clinical implications”. Med. Sci. Monit. 9, PI93–P198.Google Scholar
  124. 124.
    124. Parry, G.E., Dunn, P., Shah, V.P. Pershing, L.K. (1992) “Acyclovir bioavailability in human skin”. J. Invest. Dermatol. 98, 856–863.CrossRefGoogle Scholar
  125. 125.
    125. Stagni, G., Ali, M.E. Weng, D. (2004) “Pharmacokinetics of acyclovir in rabbit skin after i.v.-bolus, ointment and iontophoretic administrations”. Int. J. Pharm. 274, 201–211.CrossRefGoogle Scholar
  126. 126.
    126. Volpato, N., Santi, P. Colombo, P. (1995) “Iontophoresis enhances the transport of acyclovir through nude mouse skin by electrorepulsion and electroosmosis”. Pharm. Res. 12, 1623–1627.CrossRefGoogle Scholar
  127. 127.
    127. Volpato, N.M., Nicoli, S., Laureri, C., Colombo, P. Santi, P. (1998) “In vitro acyclovir distribution in human skin layers after transdermal iontophoresis”. J. Control. Rel. 50, 291–296.CrossRefGoogle Scholar
  128. 128.
    128. Goldberg, D. (2005) “Iontophoretic based drug delivery”. Innov. Pharm. Technol. 16, 68–72.Google Scholar
  129. 129.
    Brown, M.B. Martin, G.P. (2005) “Dermal drug delivery system”. World Patent No. WO 2005058226.Google Scholar
  130. 130.
    130. Santi, P., Nicoli, S., Colombo, G., Bettini, R., Artusi, M., Rimondi, S. et al. (2003) “Post iontophoresis transport of ibuprofen lysine across rabbit ear skin”. Int. J. Pharm. 266, 69–75.CrossRefGoogle Scholar
  131. 131.
    131. Grosh, S. (2000) “Transdermal drug delivery – opening doors for the future”. Euro. Pharm. Contractor (Nov.). 4, 30–32.Google Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Marc B. Brown
    • 1
  • Matthew J. Traynor
    • 1
  • Gary P. Martin
    • 2
  • Franklin K. Akomeah
    • 2
  1. 1.School of PharmacyUniversity of HertfordshireHatfieldUK
  2. 2.Department of PharmacyKing's College LondonLondonUK

Personalised recommendations