Skip to main content

Preparation and Crystallization of RNA

  • Protocol
Macromolecular Crystallography Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 363))

Abstract

The field of RNA structure has exploded in recent years, in part owing to advances in crystallography of RNA molecules. This phenomenon can largely be attributed to the development of three modern methods: (1) large-scale in vitro RNA synthesis, (2) cryocrystallography, and (3) high-intensity synchrotron beamlines. Milligram quantities of RNA can be routinely synthesized using either chemical or enzymatic syntheses, making it feasible to carry out routine crystallization experiments on RNA. This has allowed crystals of RNA to be readily obtained. Generally, RNA crystals tend to be susceptible to radiation damage and to diffract X-rays more weakly than their protein counterparts. However, cryocrystallography and the high-intensity X-ray sources have overcome many of the difficulties involved in solving crystal structures of RNA. As a result of these advances, we now have a database of RNA structures that span from simple duplexes and hairpins to complex ribozymes and ribosomes. The protocols presented here describe methods to synthesize, purify, crystallize, and derivatize RNA for use in crystallographic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, A. C., Earp, B. E., and Frederick, C. A. (1996) Sequence variation as a strategy for crystallizing RNA motifs. J. Mol. Biol. 259, 696–703.

    Article  CAS  PubMed  Google Scholar 

  2. Correll, C. C., Wool, I. G., and Munishkin, A. (1999) The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 Å resolution. J. Mol. Biol. 292, 275–287.

    Article  CAS  PubMed  Google Scholar 

  3. Golden, B. L., Podell, E. R., Gooding, A. R., and Cech, T. R. (1997) Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. J. Mol. Biol. 270, 711–723.

    Article  CAS  PubMed  Google Scholar 

  4. Price, S. R., Ito, N., Oubridge, C., Avis, J. M., and Nagai, K. (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249, 398–408.

    Article  CAS  PubMed  Google Scholar 

  5. Scott, W. G., Finch, J. T., Grenfell, R., et al. (1995) Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J. Mol. Biol. 250, 327–332.

    Article  CAS  PubMed  Google Scholar 

  6. Hoggan, D. B., Chao, J. A., Prasad, G. S., Stout, C. D., and Williamson, J. R. (2003) Combinatorial crystallization of an RNA-protein complex. Acta Crystallogr. D. Biol. Crystallogr. 59, 466–473.

    Article  PubMed  Google Scholar 

  7. Pley, H. W., Flaherty, K. M., and McKay, D. B. (1994) Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111–113.

    Article  CAS  PubMed  Google Scholar 

  8. Ferré-D’Amaré, A. R. and Doudna, J. A. (2000) Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556.

    Article  PubMed  Google Scholar 

  9. Shields, T. P., Mollova, E., Ste Marie, L., Hansen, M. R., and Pardi, A. (1999) High-performance liquid chromatography purification of homogenous-length RNA produced by trans cleavage with a hammerhead ribozyme. RNA 5, 1259–1267.

    Google Scholar 

  10. Grosshans, C. A. and Cech, T. R. (1991) A hammerhead ribozyme allows synthesis of a new form of the tetrahymena ribozyme homogeneous in length with a 3′ end blocked for transesterification. Nucleic Acids Res. 19, 3875–3880.

    Article  CAS  PubMed  Google Scholar 

  11. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Meth. Enzymol. 180, 51–62.

    Article  CAS  PubMed  Google Scholar 

  12. Kao, C., Zheng, M., and Rudisser, S. (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272.

    Article  CAS  PubMed  Google Scholar 

  13. Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W. (1984) Cloning and expression of the gene for bacteriophage-T7 RNA-polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039.

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y., Wang, E., and Wang, Y. (1999) A modified procedure for fast purification of T7 RNA polymerase. Protein Expr. Purif. 16, 355–358.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, C. J., Liu, Z. J., Rose, J. P., and Wang, B. C. (1999) Low-salt crystallization of T7 RNA polymerase: a first step towards the transcription bubble complex. Acta Crystallogr. D. Biol. Crystallogr. 55, 1188–1192.

    Article  CAS  PubMed  Google Scholar 

  16. Uhlenbeck, O. C. (1995) Keeping RNA happy. RNA 1, 4–6.

    CAS  PubMed  Google Scholar 

  17. Doudna, J. A., Grosshans, C., Gooding, A., and Kundrot, C. E. (1993) Crystallization of ribozymes and small RNA motifs by a sparse matrix approach. Proc. Natl. Acad. Sci. USA 90, 7829–7833.

    Article  CAS  PubMed  Google Scholar 

  18. Berger, I., Kang, C. H., Sinha, N., Wolters, M., and Rich, A. (1996) A highly efficient 24-condition matrix for the crystallization of nucleic acid fragments. Acta Crystallogr. D. Biol. Crystallogr. 52, 465–468.

    Article  CAS  PubMed  Google Scholar 

  19. Cate, J. H. and Doudna, J. A. (1996) Metal-binding sites in the major groove of a large ribozyme domain. Structure 4, 1221–1229.

    Article  CAS  PubMed  Google Scholar 

  20. Cruse, W., Saludjian, P., Neuman, A., and Prange, T. (2001) Destabilizing effect of a fluorouracil extra base in a hybrid RNA duplex compared with bromo and chloro analogues. Acta Crystallogr. D. Biol. Crystallogr. 57, 1609–1613.

    Article  CAS  PubMed  Google Scholar 

  21. Basu, S., Rambo, R. P., Strauss-Soukup, J., et al. (1998) A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nat. Struct. Biol. 5, 986–992.

    Article  CAS  PubMed  Google Scholar 

  22. Ennifar, E., Carpentier, P., Ferrer, J. L., Walter, P., and Dumas, P. (2002) X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Crystallogr. D. Biol. Crystallogr. 58, 1262–1268.

    Article  CAS  PubMed  Google Scholar 

  23. Carrasco, N., Ginsburg, D., Du, Q., and Huang, Z. (2001) Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Nucleosides Nucleotides Nucleic Acids 20, 1723–1734.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, W. and Steitz, T. A. (1995) Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Cell 82, 193–207.

    Article  CAS  PubMed  Google Scholar 

  25. Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A., and Schultz, S. C. (1998) Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974.

    Article  CAS  PubMed  Google Scholar 

  26. Slim, G. and Gait, M. J. (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 19, 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  27. Moore, M. J. and Query, C. C. (2000) Joining of RNAs by splinted ligation. Meth. Enzymol. 317, 109–123.

    Article  CAS  PubMed  Google Scholar 

  28. Golden, B. L., Gooding, A. R., Podell, E. R., and Cech, T. R. (1996) X-ray crystallography of large RNAs: heavy-atom derivatives by RNA engineering. RNA 2, 1295–1305.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Golden, B.L. (2007). Preparation and Crystallization of RNA. In: Walker, J.M., Doublié, S. (eds) Macromolecular Crystallography Protocols. Methods in Molecular Biology, vol 363. Humana Press. https://doi.org/10.1007/978-1-59745-209-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-209-0_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-292-6

  • Online ISBN: 978-1-59745-209-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics