Two-Dimensional Gel Electrophoresis-Based Proteomics of Mycobacteria

  • Jens Mattow
  • Frank Siejak
  • Kristine Hagens
  • Julia Kreuzeder
  • Stefan H.E. Kaufmann
  • Ulrich E. Schaible
Part of the Methods in Molecular Biology book series (MIMB, volume 465)


Two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry (MS) is the classic proteomics approach used to monitor the dynamics of protein abundance and posttranslational modifications in biological systems. In this chapter, we provide detailed protocols for 2-DE–based proteomics of mycobacteria. Adequate standard operating procedures for mycobacterial culture, subcellular fractionation, and selective enrichment of proteins are indispensable prerequisites for targeted proteome analyses. Therefore, we also provide approved protocols for selective and efficient extraction of cytosolic, secreted, and hydrophobic plasma membrane proteins of mycobacteria, as well as for isolation of mycobacteria from infected macrophages.


mass spectrometry mycobacteria Mycobacterium tuberculosis proteomics tandem mass spectrometry two-dimensional electrophoresis 



The authors thank Dr. Peter Jungblut (MPIIB), Dr. Frank Schmidt (University of Oslo, Biotechnology Centre of Oslo, Oslo, Norway), and Dr. Achim Treumann (Royal College of Surgeons, Department of Clinical Pharmacology, Dublin, Ireland) for their fruitful cooperation, Dr. Sarah Fortune (Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA) for providing us with the protocol described in Section, Dr. Stephen Reece (MPIIB) for critical reading of the manuscript, and the Bundesministerium für Bildung und Forschung (Competence Network “Neue Methoden zur Erfassung des Gesamtproteoms von Bakterien” J.M., S.H.E.K., U.E.S.; Competence network “PathoGenoMik-Plus”; J.M., S.H.E.K.), the Deutsche Forschungsgemeinschaft (DFG Priority Programme SPP1131; U.E.S.), the Royal Society Wolfson Research Merit Award, UK (U.E.S.), and the European Community (Project “Structural and Functional Genomics of M. tuberculosis”; S.H.E.K.) for financial support.


  1. 1.
    Cole ST, Brosch R, Parkhill J et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 396:190–198.CrossRefGoogle Scholar
  2. 2.
    Fleischmann RD, Alland D, Eisen JA et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 2002; 184:5479–5490.PubMedCrossRefGoogle Scholar
  3. 3.
    Cole ST, Eiglmeier K, Parkhill J et al. Massive gene decay in the leprosy bacillus. Nature 2001; 409:1007–1011.PubMedCrossRefGoogle Scholar
  4. 4.
    Garnier T, Eiglmeier K, Camus JC et al. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 2003; 100:7877–7882.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilkins MR, Pasquali C, Appel RD et al. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (NY) 1996; 14:61–65.CrossRefGoogle Scholar
  6. 6.
    Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19:1720–1730.PubMedGoogle Scholar
  7. 7.
    Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 2003; 4:117.PubMedCrossRefGoogle Scholar
  8. 8.
    Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997; 18:533–537.PubMedCrossRefGoogle Scholar
  9. 9.
    Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 2001; 7:493–496.PubMedCrossRefGoogle Scholar
  10. 10.
    Chaurand P, Stoeckli M, Caprioli RM. Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem 1999; 71:5263–5270.PubMedCrossRefGoogle Scholar
  11. 11.
    Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002; 415: 180–183.PubMedCrossRefGoogle Scholar
  12. 12.
    Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415: 141–147.PubMedCrossRefGoogle Scholar
  13. 13.
    Jungblut PR. Proteome analysis of bacterial pathogens. Microbes Infect 2001; 3: 831–840.PubMedCrossRefGoogle Scholar
  14. 14.
    Wittmann-Liebold B, Graack HR, Pohl T. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 2006; 6: 4688–4703.PubMedCrossRefGoogle Scholar
  15. 15.
    Sadygov RG, Cociorva D, Yates JR III. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods 2004; 1: 195–202.PubMedCrossRefGoogle Scholar
  16. 16.
    Shadforth I, Crowther D, Bessant C. Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. Proteomics 2005; 5: 4082–4095.PubMedCrossRefGoogle Scholar
  17. 17.
    Mattow J, Jungblut PR, Müller EC, Kaufmann SH. Identification of acidic, low molecular mass proteins of Mycobacterium tuberculosis strain H37Rv by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 2001; 1: 494–507.PubMedCrossRefGoogle Scholar
  18. 18.
    Gevaert K, Vandekerckhove J. Protein identification methods in proteomics. Electrophoresis 2000; 21: 1145–1154.PubMedCrossRefGoogle Scholar
  19. 19.
    Lahm HW, Langen H. Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 2000; 21: 2105–2114.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmidt F, Schmid M, Jungblut PR, Mattow J, Facius A, Pleissner KP. Iterative data analysis is the key for exhaustive analysis of peptide mass fingerprints from proteins separated by two-dimensional electrophoresis. J Am Soc Mass Spectrom 2003; 14: 943–956.PubMedCrossRefGoogle Scholar
  21. 21.
    Mattow J, Schmidt F, Höhenwarter W, Siejak F, Schaible UE, Kaufmann SH. Protein identification and tracking in two-dimensional electrophoretic gels by minimal protein identifiers. Proteomics 2004; 4: 2927–2941.PubMedCrossRefGoogle Scholar
  22. 22.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422: 198–207.PubMedCrossRefGoogle Scholar
  23. 23.
    Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 2005; 1: 252–262.PubMedCrossRefGoogle Scholar
  24. 24.
    Rabilloud T. Membrane proteins ride shotgun. Nat Biotechnol 2003; 21: 508–510.PubMedCrossRefGoogle Scholar
  25. 25.
    Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 2000; 21: 1054–1070.PubMedCrossRefGoogle Scholar
  26. 26.
    Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004; 4: 3665–3685.PubMedCrossRefGoogle Scholar
  27. 27.
    Delahunty C, Yates JR III. Protein identification using 2D-LC-MS/MS. Methods 2005; 35: 248–255.PubMedCrossRefGoogle Scholar
  28. 28.
    Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19: 242–247.PubMedCrossRefGoogle Scholar
  29. 29.
    Wolters DA, Washburn MP, Yates JR III. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 2001; 73: 5683–5690.PubMedCrossRefGoogle Scholar
  30. 30.
    Domon B, Aebersold R. Mass spectrometry and protein analysis. Science 2006; 312: 212–217.PubMedCrossRefGoogle Scholar
  31. 31.
    Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 1995; 16:1034–1059.PubMedCrossRefGoogle Scholar
  32. 32.
    Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997; 18:2071–2077.PubMedCrossRefGoogle Scholar
  33. 33.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999; 17:994–999.PubMedCrossRefGoogle Scholar
  34. 34.
    Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1:376–386.PubMedCrossRefGoogle Scholar
  35. 35.
    Chakraborty A, Regnier FE. Global internal standard technology for comparative proteomics. J Chromatogr A 2002; 949:173–184.PubMedCrossRefGoogle Scholar
  36. 36.
    Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactivre isobaric tagging reagents. Mol Cell Proteomics 2004; 3:1154-1169PubMedCrossRefGoogle Scholar
  37. 37.
    Schmidt A, Kellermann J, Lottspeich F. A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 2005; 5:4–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff P. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrom 2000; 14:1226–1232.PubMedCrossRefGoogle Scholar
  39. 39.
    Jungblut P, Thiede B, Zimny-Arndt U et al. Resolution power of two-dimensional electrophoresis and identification of proteins from gels. Electrophoresis 1996; 17:839–847.PubMedCrossRefGoogle Scholar
  40. 40.
    Jungblut P, Thiede B. Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom Rev 1997; 16:145–162.PubMedCrossRefGoogle Scholar
  41. 41.
    Jungblut PR, Hecker M. Proteomics of microbial pathogens. Proteomics 2004; 4:2829–2830.CrossRefGoogle Scholar
  42. 42.
    Jungblut PR, Schaible UE, Mollenkopf HJ et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 1999; 33:1103–1117.PubMedCrossRefGoogle Scholar
  43. 43.
    Mattow J, Schaible UE, Schmidt F et al. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated Mycobacterium bovis BCG Copenhagen. Electrophoresis 2003; 24:3405–3420.PubMedCrossRefGoogle Scholar
  44. 44.
    Mattow J, Jungblut PR, Schaible UE et al. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis 2001; 22:2936–2946.PubMedCrossRefGoogle Scholar
  45. 45.
    Schmidt F, Donahoe S, Hagens K et al. Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 2004; 3:24–42.PubMedGoogle Scholar
  46. 46.
    Sinha S, Arora S, Kosalai K, Namane A, Pym AS, Cole ST. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp Funct Genom 2002; 3:470–483.CrossRefGoogle Scholar
  47. 47.
    Pheiffer C, Betts JC, Flynn HR, Lukey PT, van Helden P. Protein expression by a Beijing strain differs from that of another clinical isolate and Mycobacterium tuberculosis H37Rv. Microbiology 2005; 151:1139–1150.PubMedCrossRefGoogle Scholar
  48. 48.
    He XY, Zhuang YH, Zhang XG, Li GL. Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra. Microbes Infect 2003; 5:851–856.PubMedCrossRefGoogle Scholar
  49. 49.
    Betts JC, Dodson P, Quan S et al. Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology 2000; 146:3205–3216.PubMedGoogle Scholar
  50. 50.
    Bahk YY, Kim SA, Kim JS et al. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 2004; 4:3299–3307.PubMedCrossRefGoogle Scholar
  51. 51.
    Starck J, Kallenius G, Marklund BI, Andersson DI, Akerlund T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 2004; 150:3821–3829.PubMedCrossRefGoogle Scholar
  52. 52.
    Rosenkrands I, Slayden RA, Crawford J, Aagaard C, Barry CE, III, Andersen P. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 2002; 184:3485–3491.PubMedCrossRefGoogle Scholar
  53. 53.
    Boon C, Li R, Qi R, Dick T. Proteins of Mycobacterium bovis BCG induced in the Wayne dormancy model. J Bacteriol 2001; 183:2672–2676.PubMedCrossRefGoogle Scholar
  54. 54.
    Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 2002; 43:717–731.PubMedCrossRefGoogle Scholar
  55. 55.
    Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I. Proteins released from Mycobacterium tuberculosis during growth. Infect Immun 1991; 59:1905–1910.PubMedGoogle Scholar
  56. 56.
    Covert BA, Spencer JS, Orme IM, Belisle JT. The application of proteomics in defining the T cell antigens of Mycobacterium tuberculosis. Proteomics 2001; 1:574–586.PubMedCrossRefGoogle Scholar
  57. 57.
    Dobos KM, Spencer JS, Orme IM, Belisle JT. Proteomic approaches to antigen discovery. Methods Mol Med 2004; 94:3–17.PubMedGoogle Scholar
  58. 58.
    Fortune SM, Jaeger A, Sarracino DA et al. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A 2005; 102:10676–10681.PubMedCrossRefGoogle Scholar
  59. 59.
    Rosenkrands I, Weldingh K, Jacobsen S et al. Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 2000; 21:935–948.PubMedCrossRefGoogle Scholar
  60. 60.
    Sinha S, Kosalai K, Arora S et al. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. Microbiology 2005; 151:2411–2419.PubMedCrossRefGoogle Scholar
  61. 61.
    Weldingh K, Rosenkrands I, Jacobsen S, Rasmussen PB, Elhay MJ, Andersen P. Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect Immun 1998; 66:3492–3500.PubMedGoogle Scholar
  62. 62.
    Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF. S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 2005; 102:467–472.PubMedCrossRefGoogle Scholar
  63. 63.
    Strong M, Graeber TG, Beeby M et al. Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Nucleic Acids Res 2003; 31:7099–7109.PubMedCrossRefGoogle Scholar
  64. 64.
    Strong M, Mallick P, Pellegrini M, Thompson MJ, Eisenberg D. Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach. Genome Biol 2003; 4:R59.PubMedCrossRefGoogle Scholar
  65. 65.
    Mawuenyega KG, Forst CV, Dobos KM et al. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 2005; 16:396–404.PubMedCrossRefGoogle Scholar
  66. 66.
    Mollenkopf HJ, Grode L, Mattow J et al. Application of mycobacterial proteomics to vaccine design: Improved protection by Mycobacterium bovis BCG prime-Rv3407 DNA boost vaccination against tuberculosis. Infect Immun 2004; 72:6471–6479.PubMedCrossRefGoogle Scholar
  67. 67.
    Mattow J, Siejak F, Hagens K et al. Proteins unique to intraphagosomally grown Mycobacterium tuberculosis. Proteomics 2006; 6:2485–2494.PubMedCrossRefGoogle Scholar
  68. 68.
    Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 1996; 64:2062–2069.PubMedGoogle Scholar
  69. 69.
    Boon C, Dick T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 2002; 184:6760–6767.PubMedCrossRefGoogle Scholar
  70. 70.
    Stasyk T, Huber LA. Zooming in: fractionation strategies in proteomics. Proteomics 2004; 4:3704–3716.PubMedCrossRefGoogle Scholar
  71. 71.
    Lescuyer P, Hochstrasser DF, Sanchez JC. Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis 2004; 25:1125–1135.PubMedCrossRefGoogle Scholar
  72. 72.
    Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 1981; 256:1604–1607.PubMedGoogle Scholar
  73. 73.
    Fujiki Y, Hubbard AL, Fowler S, Lazarow PB. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 1982; 93:97–102.PubMedCrossRefGoogle Scholar
  74. 74.
    Schaible UE, Kaufmann SHE. Studying trafficing of intracellular pathogens in antigen-presenting cells. In: Sansonetti P, Zychlinsky A, eds. Methods in Microbiology, Volume 31. Academic Press, New York, 2002, p. 343–360.Google Scholar
  75. 75.
    Zimny-Arndt U, Schmid M, Ackermann R, Jungblut PR. Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. In: Pasatolic L, ed. Mass Spectrometry of Proteins and Peptides. Humana Press, Totowa, NJ, 2007.Google Scholar
  76. 76.
    Malen H, Berven FS, Fladmark KE, Wiker HG. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 2007; 7:1702–1718.PubMedCrossRefGoogle Scholar
  77. 77.
    Dubnau E, Fontan P, Manganelli R, Soares-Appel S, Smith I. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 2002; 70:2787–2795.PubMedCrossRefGoogle Scholar
  78. 78.
    Monahan IM, Betts J, Banerjee DK, Butcher PD. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 2001; 147:459–471.PubMedGoogle Scholar
  79. 79.
    Rachman H, Strong M, Ulrichs T et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 2006; 74:1233–1242.PubMedCrossRefGoogle Scholar
  80. 80.
    Schnappinger D, Ehrt S, Voskuil MI et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J Exp Med 2003; 198:693–704.PubMedCrossRefGoogle Scholar
  81. 81.
    Sturgill-Koszycki S, Haddix PL, Russell DG. The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 1997; 18:2558–2565.PubMedCrossRefGoogle Scholar
  82. 82.
    Mattow J, Siejak F, Hagens K et al. An improved strategy for selective and efficient enrichment of integral plasma membrane proteins of mycobacteria. Proteomics 2007; 7:1687–1701.PubMedCrossRefGoogle Scholar
  83. 83.
    Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975; 26:231–243.Google Scholar
  84. 84.
    O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250:4007–4021.PubMedGoogle Scholar
  85. 85.
    Görg A, Postel W, Westermeier R, Gianazza E, Righetti PG. Gel gradient electrophoresis, isoelectric focusing and two-dimensional techniques in horizontal, ultrathin polyacrylamide layers. J Biochem Biophys Methods 1980; 3:273–284.PubMedCrossRefGoogle Scholar
  86. 86.
    Jungblut PR, Bumann D, Haas G et al. Comparative proteome analysis of Helicobacter pylori. Mol Microbiol 2000; 36:710–725.PubMedCrossRefGoogle Scholar
  87. 87.
    Aksu S, Scheler C, Focks N et al. An iterative calibration method with prediction of post-translational modifications for the construction of a two-dimensional electrophoresis database of mouse mammary gland proteins. Proteomics 2002; 2:1452–1463.PubMedCrossRefGoogle Scholar
  88. 88.
    Dowsey AW, Dunn MJ, Yang GZ. The role of bioinformatics in two-dimensional gel electrophoresis. Proteomics 2003; 3:1567–1596.PubMedCrossRefGoogle Scholar
  89. 89.
    Raman B, Cheung A, Marten MR. Quantitative comparison and evaluation of two commercially available, two-dimensional electrophoresis image analysis software packages, Z3 and Melanie. Electrophoresis 2002; 23:2194–2202.PubMedCrossRefGoogle Scholar
  90. 90.
    Westermeier R, Marouga R. Protein detection methods in proteomics research. Biosci Rep 2005; 25:19–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Westermeier R. Sensitive, quantitative, and fast modifications for Coomassie Blue staining of polyacrylamide gels. Proteomics 2006; 6:61–64.PubMedCrossRefGoogle Scholar
  92. 92.
    Miller I, Crawford J, Gianazza E. Protein stains for proteomic applications: which, when, why? Proteomics 2006; 6:5385–5408.PubMedCrossRefGoogle Scholar
  93. 93.
    Jungblut PR, Seifert R. Analysis by high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells. J Biochem Biophys Methods 1990; 21:47–58.PubMedCrossRefGoogle Scholar
  94. 94.
    Doherty NS, Littman BH, Reilly K, Swindell AC, Buss JM, Anderson NL. Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 1998; 19:355–363.PubMedCrossRefGoogle Scholar
  95. 95.
    Fernandez-Patron C, Hardy E, Sosa A, Seoane J, Castellanos L. Double staining of coomassie blue-stained polyacrylamide gels by imidazole-sodium dodecyl sulfate-zinc reverse staining: sensitive detection of coomassie blue-undetected proteins. Anal Biochem 1995; 224:263–269.PubMedCrossRefGoogle Scholar
  96. 96.
    Fernandez-Patron C, Castellanos-Serra L, Hardy E et al. Understanding the mechanism of the zinc-ion stains of biomacromolecules in electrophoresis gels: generalization of the reverse-staining technique. Electrophoresis 1998; 19:2398–2406.PubMedCrossRefGoogle Scholar
  97. 97.
    Mollenkopf HJ, Mattow J, Schaible UE, Grode L, Kaufmann SH, Jungblut PR. Mycobacterial proteomes. Methods Enzymol 2002; 358:242–256.PubMedCrossRefGoogle Scholar
  98. 98.
    Thiede B, Höhenwarter W, Krah A et al. Peptide mass fingerprinting. Methods 2005; 35:237–247.PubMedCrossRefGoogle Scholar
  99. 99.
    Northrop JH, Kunitz M. Isolation of protein crystals possessing tryptic activity. Science 1931; 73:262–263.PubMedCrossRefGoogle Scholar
  100. 100.
    Perona JJ, Craik CS. Structural basis of substrate specificity in the serine proteases. Protein Sci 1995; 4: 337–360.PubMedCrossRefGoogle Scholar
  101. 101.
    Gross E, Witkop B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem 1962; 237:1856–1860.PubMedGoogle Scholar
  102. 102.
    Cordoba OL, Linskens SB, Dacci E, Santome JA. ‘In gel’ cleavage with cyanogen bromide for protein internal sequencing. J Biochem Biophys Methods 1997; 35:1–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Drapeau GR, Boily Y, Houmard J. Purification and properties of an extracellular protease of Staphylococcus aureus. J Biol Chem 1972; 247:6720–6726.PubMedGoogle Scholar
  104. 104.
    Birktoft JJ, Breddam K. Glutamyl endopeptidases. Methods Enzymol 1994; 244:114–126.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jens Mattow
    • 1
  • Frank Siejak
    • 2
  • Kristine Hagens
    • 2
  • Julia Kreuzeder
    • 2
  • Stefan H.E. Kaufmann
    • 2
  • Ulrich E. Schaible
    • 2
  1. 1.Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany
  2. 2.Department of ImmunologyMax Planck Institute for Infection BiologyBerlinGermany

Personalised recommendations