Analyzing Lipid Metabolism: Activation and β-Oxidation of Fatty Acids

  • Paul Robert Wheeler
Part of the Methods in Molecular Biology book series (MIMB, volume 465)


There is massive gene replication predicted for the activation of fatty acids and their entry into the β-oxidation cycle for fatty acid oxidation. These two steps in fatty acid metabolism are catalyzed by FadD and FadE enzymes with 36 genes predicted for each of these respective activities in Mycobacterium tuberculosis. Here we present methods for the cell-free assay of types of enzymes in live bacteria, as well as for fatty acid oxidation overall.


β-oxidation FadD FadE fatty-acid-CoA ligase (EC fatty acid metabolism fatty acid oxidation fatty acyl-CoA dehydrogenase (EC fatty acyl-CoA synthase (EC mycobacteria Mycobacterium tuberculosis 



P.R.W. was supported through DEFRA funding.


  1. 1.
    Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature; 393: 537–544.PubMedCrossRefGoogle Scholar
  2. 2.
    Siddiqi S. H., Hwangbo C. C., Silcox V., Good R. C., Snide D. E., & Middlebrook G. (1984). Rapid radiometric methods to detect and differentiate Mycobacterium/M.bovis from other mycobacterial species. Am Rev Respir Dis; 130: 634–640.PubMedGoogle Scholar
  3. 3.
    Camargo E. E., Kertcher J. A., Larson S. M., Tepper B. S. & Wagner H. N. (1982). Radiometric measurement of differential metabolism of fatty acid by mycobacteria. Int J Lepr Other Mycobact Dis; 50: 200–204.PubMedGoogle Scholar
  4. 4.
    Heifets L. B., Iseman M. D., Cook J. L., Levy P. J. & Drupa I. (1985). Determination of the in vitro susceptibility of Mycobacterium tuberculosis to cephalosporins by radiometric and conventional means. Antimicrob Agents Chemother; 27: 11–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Camargo E. E., & Wagner H. N. (1987). Radiometric studies on the oxidation of 1-14C fatty acids and U-14C amino acids by mycobacteria. Nucl Med Biol; 14: 43–49.Google Scholar
  6. 6.
    Wheeler P. R., Bulmer K., & Ratledge C. (1991) Fatty acid oxidation and the beta-oxidation complex in Mycobacterium leprae and two axenically cultivable mycobacteria that are pathogens. J Gen Microbiol; 137: 885–893.PubMedGoogle Scholar
  7. 7.
    Wheeler P. R., & Ratledge C. (1988). Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria. J Gen Microbiol; 134: 2111–2121.PubMedGoogle Scholar
  8. 8.
    Franzblau S. G. (1988). Oxidation of Palmitic acid by Mycobacterium leprae in an axenic medium. J Clin Microbiol; 26: 18–21.PubMedGoogle Scholar
  9. 9.
    Trivedi O. A., Arora P., Sridharan V., Tickoo R., Mohanty D., & Gokhale R. S. (2004). Enzyme activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature; 428: 441–445.PubMedCrossRefGoogle Scholar
  10. 10.
    Shulz R. (1974). Long chain enoyl-CoA hydatase from pig heart. J Biol Chem; 249: 2704–2709.Google Scholar
  11. 11.
    Parish T., & Wheeler P. R. (1998). Preparation of cell-free extracts from mycobacteria. Methods Mol Biol; 101: 77–89.PubMedGoogle Scholar
  12. 12.
    Hosaka K., Mishina M., Kamiryo T., & Numa S. (1981). Long-chain acyl-CoA synthetases I and II from Candida lipolytica. Methods Enzymol; 71: 325–333.CrossRefGoogle Scholar
  13. 13.
    Mahadevan U., & Padmanaban G. (1998). Cloning and expression of an acyl-CoA dehydrogenase from Mycobacterium tuberculosis. Biochem Biophys Res Commun; 244: 893–897.PubMedCrossRefGoogle Scholar
  14. 14.
    Qiu J (1993). Enzymology. In: Chambers J. A. A., & Rickwood D, eds. Biochemistry Labfax. Bios Scientific, Oxford, UK,1993: 101–144.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Veterinary Laboratories Agency (Weybridge)Tuberculosis Research GroupSurreyUK

Personalised recommendations