Advertisement

Construction of Targeted Mycobacterial Mutants by Homologous Recombination

  • Sharon L. Kendall
  • Rosangela Frita
Part of the Methods in Molecular Biology book series (MIMB, volume 465)

Abstract

The ability to select genes to knock out of mycobacterial genomes has greatly improved our understanding of mycobacteria. This chapter describes a method for doing this. The gene (including a 1-kb flanking region) is cloned into a pNIL series vector and disrupted by deletion or insertion of a cassette. A selection of marker genes obtained from the pGOAL series of vectors are inserted into the pNIL vector to create a suicide delivery system. This delivery vector is introduced into mycobacteria where the disrupted version of the gene replaces the wild-type version by a two-step homologous recombination process. The method involves selecting for a single crossover event followed by selection of double crossovers. Single crossovers have incorporated plasmid marker genes and are sucroseS, kanamycinR and blue on media containing X-gal. Double crossovers have lost plasmid markers and are sucroseR, kanamycinS and white on media containing X-gal.

Keywords

allelic replacement gene knock-out homologous recombination mycobacteria mutant 

References

  1. 1.
    Shin, S. J., Wu, C. W., Steinberg, H., and Talaat, A. M. (2006) Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 74, 3825–33.PubMedCrossRefGoogle Scholar
  2. 2.
    Mehta, P. K., Pandey, A. K., Subbian, S., El-Etr, S. H., Cirillo, S. L., Samrakandi, M. M., and Cirillo, J. D. (2006) Identification of Mycobacterium marinum macrophage infection mutants. Microb Pathog 40, 139–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Ruley, K. M., Ansede, J. H., Pritchett, C. L., Talaat, A. M., Reimschuessel, R., and Trucksis, M. (2004) Identification of Mycobacterium marinum virulence genes using signature-tagged mutagenesis and the goldfish model of mycobacterial pathogenesis. FEMS Microbiol Lett 232, 75–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Philalay, J. S., Palermo, C. O., Hauge, K. A., Rustad, T. R., and Cangelosi, G. A. (2004) Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 48, 3412–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989–94.PubMedCrossRefGoogle Scholar
  6. 6.
    McAdam, R. A., Quan, S., Smith, D. A., Bardarov, S., Betts, J. C., Cook, F. C., Hooker, E. U., Lewis, A. P., Woollard, P., Everett, M. J., Lukey, P. T., Bancroft, G. J., Jacobs W. R. Jr., and Duncan, K. (2002) Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148, 2975–86.PubMedGoogle Scholar
  7. 7.
    Li, Y., Miltner, E., Wu, M., Petrofsky, M., and Bermudez, L. E. (2005) A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cell Microbiol 7, 539–48.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, J. M., German, G. J., Alexander, D. C., Ren, H., Tan, T., and Liu, J. (2006) Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 188, 633–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Movahedzadeh, F., Smith, D. A., Norman, R. A., Dinadayala, P., Murray-Rust, J., Russell, D. G., Kendall, S. L., Rison, S. C., McAlister, M. S., Bancroft, G. J., McDonald, N. Q., Daffe, M., Av-Gay, Y., and Stoker, N. G. (2004) The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol Microbiol 51, 1003–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Parish, T., Schaeffer, M., Roberts, G., and Duncan, K. (2005) HemZ is essential for heme biosynthesis in Mycobacterium tuberculosis. Tuberculosis (Edinb) 85, 197–204.CrossRefGoogle Scholar
  11. 11.
    Parish, T., and Stoker, N. G. (2000) glnE is an essential gene in Mycobacterium tuberculosis. J Bacteriol 182, 5715–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Hernandez Pando, R., Aguilar, L. D., Infante, E., Cataldi, A., Bigi, F., Martin, C., and Gicquel, B. (2006) The use of mutant mycobacteria as new vaccines to prevent tuberculosis. Tuberculosis 86, 203–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Perez, E., Samper, S., Bordas, Y., Guilhot, C., Gicquel, B., and Martin, C. (2001) An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 41, 179–87.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith, D. A., Parish, T., Stoker, N. G., and Bancroft, G. J. (2001) Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun 69, 1142–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Vilcheze, C., Wang, F., Arai, M., Hazbon, M. H., Colangeli, R., Kremer, L., Weisbrod, T. R., Alland, D., Sacchettini, J. C., and Jacobs, W. R. Jr. (2006) Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12, 1027–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Brooks, L. A. (1998) Chemical mutagenesis of mycobacteria. Methods Mol Biol 101, 175–86.PubMedGoogle Scholar
  17. 17.
    Guilhot, C., Otal, I., Van Rompaey, I., Martin, C., and Gicquel, B. (1994) Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176, 535–9.Google Scholar
  18. 18.
    Martin, C., Timm, J., Rauzier, J., Gomez-Lus, R., Davies, J., and Gicquel, B. (1990) Transposition of an antibiotic resistance element in mycobacteria. Nature 345, 739–43.PubMedCrossRefGoogle Scholar
  19. 19.
    McAdam, R. A., Weisbrod, T. R., Martin, J., Scuderi, J. D., Brown, A. M., Cirillo, J. D., Bloom, B. R., and Jacobs, W. R., Jr. (1995) In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 63, 1004–12.PubMedGoogle Scholar
  20. 20.
    Rengarajan, J., Bloom, B. R., and Rubin, E. J. (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102, 8327–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Husson, R. N., James, B. E., and Young, R. A. (1990) Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol 172, 519–24.PubMedGoogle Scholar
  22. 22.
    Kalpana, G. V., Bloom, B. R., and Jacobs, W. R., Jr. (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci U S A 88, 5433–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Machowski, E. E., Dawes, S., and Mizrahi, V. (2005) TB tools to tell the tale-molecular genetic methods for mycobacterial research. Int J Biochem Cell Biol 37, 54–68.PubMedCrossRefGoogle Scholar
  24. 24.
    Reyrat, J. M., Berthet, F. X., and Gicquel, B. (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proc Natl Acad Sci U S A 92, 8768–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Balasubramanian, V., Pavelka, M. S., Jr., Bardarov, S. S., Martin, J., Weisbrod, T. R., McAdam, R. A., Bloom, B. R., and Jacobs, W. R., Jr. (1996) Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol 178, 273–9.PubMedGoogle Scholar
  26. 26.
    Parish, T., and Stoker, N. G. (2000) Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146 (Pt 8), 1969–75.PubMedGoogle Scholar
  27. 27.
    Cox, M. M. (1999) Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res Mol Biol 63, 311–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Muttucumaru, D. G., and Parish, T. (2004) The molecular biology of recombination in mycobacteria: what do we know and how can we use it? Curr Issues Mol Biol 6, 145–57.PubMedGoogle Scholar
  29. 29.
    Hinds, J., Mahenthiralingam, E., Kempsell, K. E., Duncan, K., Stokes, R. W., Parish, T., and Stoker, N. G. (1999) Enhanced gene replacement in mycobacteria. Microbiology 145, 519–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Pelicic, V., Reyrat, J. M., and Gicquel, B. (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20, 919–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Pashley, C. A., Parish, T., McAdam, R. A., Duncan, K., and Stoker, N. G. (2003) Gene replacement in mycobacteria by using incompatible plasmids. Appl Environ Microbiol 69, 517–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Pelicic, V., Reyrat, J. M., and Gicquel, B. (1998) Genetic advances for studying Mycobacterium tuberculosis pathogenicity. Mol Microbiol 28, 413–20.PubMedCrossRefGoogle Scholar
  33. 33.
    Parish, T., Smith, D. A., Kendall, S., Casali, N., Bancroft, G. J., and Stoker, N. G. (2003) Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect Immun 71, 1134–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Parish, T., Smith, D. A., Roberts, G., Betts, J., and Stoker, N. G. (2003) The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149, 1423–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Parish, T., Turner, J., and Stoker, N. G. (2001) amiA is a negative regulator of acetamidase expression in Mycobacterium smegmatis. BMC Microbiol 1, 19.PubMedCrossRefGoogle Scholar
  36. 36.
    Chauhan, A., Madiraju, M. V., Fol, M., Lofton, H., Maloney, E., Reynolds, R., and Rajagopalan, M. (2006) Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings. J Bacteriol 188, 1856–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Dawes, S. S., Warner, D. F., Tsenova, L., Timm, J., McKinney, J. D., Kaplan, G., Rubin, H., and Mizrahi, V. (2003) Ribonucleotide reduction in Mycobacterium tuberculosis: function and expression of genes encoding class Ib and class II ribonucleotide reductases. Infect Immun 71, 6124–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Matsoso, L. G., Kana, B. D., Crellin, P. K., Lea-Smith, D. J., Pelosi, A., Powell, D., Dawes, S. S., Rubin, H., Coppel, R. L., and Mizrahi, V. (2005) Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J Bacteriol 187, 6300–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Curry, J. M., Whalan, R., Hunt, D. M., Gohil, K., Strom, M., Rickman, L., Colston, M. J., Smerdon, S. J., and Buxton, R. S. (2005) An ABC transporter containing a forkhead-associated domain interacts with a serine-threonine protein kinase and is required for growth of Mycobacterium tuberculosis in mice. Infect Immun 73, 4471–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Onwueme, K. C., Ferreras, J. A., Buglino, J., Lima, C. D., and Quadri, L. E. (2004) Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci USA 101, 4608–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Shimono, N., Morici, L., Casali, N., Cantrell, S., Sidders, B., Ehrt, S., and Riley, L. W. (2003) Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc Natl Acad Sci U S A 100, 15918–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Boshoff, H. I., Reed, M. B., Barry, C. E., 3rd, and Mizrahi, V. (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113, 183–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Primm, T. P., Andersen, S. J., Mizrahi, V., Avarbock, D., Rubin, H., and Barry, C. E. III (2000) The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 182, 4889–98.Google Scholar
  44. 44.
    Hu, Y., Movahedzadeh, F., Stoker, N. G., and Coates, A. R. (2006) Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 74, 861–8.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Pathology and Infectious DiseasesThe Royal Veterinary CollegeLondonUK
  2. 2.Department of Pathology and Infectious DiseasesThe Royal Veterinary CollegeLondonUK

Personalised recommendations