Advertisement

Inducible Expression Systems for Mycobacteria

  • Christopher M. Sassetti
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 465)

Abstract

A wide variety of inducible expression systems have been designed for Gram-negative bacteria, but adapting these systems to phylogenetically distinct species, such as mycobacteria, has proved notoriously difficult. Mycobacteria belong to a class of high G+C Gram-positive bacteria known as actinomycetes. Although comparatively few genetic tools are available for these organisms, those that do exist are more likely to be adaptable for use in mycobacteria. A compelling example of this rationale is the recent description of a tetracycline-responsive element from corynebacteria that functions in mycobacteria. Here we describe the use of two additional mycobacterial expression systems that are derived from endogenous regulons of Streptomyces and Rhodococcus spp. Each of the currently available systems has specific advantages and limitations, and the conditions that recommend the use of each will be discussed.

Keywords

gene regulation inducible expression overexpression 

References

  1. 1.
    Balabas, P. and Lorence, A. (2004) Recombinant Gene Expression, 2nd ed. Humana Press. Totowa, NJ.CrossRefGoogle Scholar
  2. 2.
    Hatfull, G. H. and Jacobs, W. R. Jr. (2000) Molecular Genetics of Mycobacteria. ASM Press. Washington, DC.Google Scholar
  3. 3.
    Parish, T., Mahenthiralingam, E. Draper, P., Davis, E. O., and Colston, M. J. (1997) Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology. 143, 2267–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Brown, A. C., and Parish, T. (2006) Instability of pJAM2-based expression vectors in Mycobacterium tuberculosis. Plasmid. 55, 81–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Blokpoel, M. C., Murphy, H. N., O'Toole, R., Wiles, S., Runn, E. S., Stewart, G. R., Young, D. B., and Robertson, B. D. (2005) Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res. 33, e22.PubMedCrossRefGoogle Scholar
  6. 6.
    Carroll, P., Muttucumaru, D. G., and Parish, T. (2005) Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl Environ Microbiol. 71, 3077–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Ehrt, S., Guo, X. V., Hickey, C. M., Ryou, M., Monteleone, M., Riley, L. W., and Schnappinger, D. (2005) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res. 33, e21.PubMedCrossRefGoogle Scholar
  8. 8.
    Komeda, H., Hori, Y., Kobayashi, M., and Shimizu, S. (1996) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci U S A. 93, 10572–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Nagasawa, T., Wieser, M., Nakamura, T., Iwahara, H., Yoshida, T., and Gekko, K. (2000) Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur J Biochem. 267, 138–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Herai, S., Hashimoto, Y., Higashibata, H., Maseda, H., Ikeda, H., Omura, S., and Kobayashi, M. (2004) Hyper-inducible expression system for streptomycetes. Proc Natl Acad Sci U S A. 101, 14031–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 177, 4121–30.PubMedGoogle Scholar
  12. 12.
    Lee, N. L., Gielow, W. O., and Wallace, R. G. (1981) Mechanism of araC autoregulation and the domains of two overlapping promoters, Pc and PBAD, in the L-arabinose regulatory region of Escherichia coli. Proc Natl Acad Sci U S A. 78, 752–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Murakami, T., Holt, T. G., and Thompson, C. J. (1989) Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol. 171, 1459–66.PubMedGoogle Scholar
  14. 14.
    Takano, E., White, J., Thompson, C. J., and Bibb, M. J. (1995) Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene. 166, 133–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Chiu, M. L., Folcher, M., Katoh, T., Puglia, A. M., Vohradsky, J., Yun, B. S., Seto, H., and Thompson, C. J. (1999) Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression. J Biol Chem. 274, 20578–86.PubMedCrossRefGoogle Scholar
  16. 16.
    Chiu, M. L., Viollier, P. H., Katoh, T., Ramsden, J. J., and Thompson, C. J. (2001) Ligand-induced changes in the Streptomyces lividans TipAL protein imply an alternative mechanism of transcriptional activation for MerR-like proteins. Biochemistry. 40, 12950–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Ranes, M. G., Rauzier, J., Lagranderie, M., Gheorghui, M., and Gicquel, B. (1990) Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “mini” mycobacterium-Escherichia coli shuttle vector. Journal of Bacteriology. 172, 2793–7.PubMedGoogle Scholar
  18. 18.
    Nagasawa, T., Nakamura, T., and Yamada, N. (1990) ε-caprolactam, a new powerful inducer for the formation of Rhodococcus rhodochrous J1 nitrilase. Arch Microbiol. 155, 13–17.CrossRefGoogle Scholar
  19. 19.
    Chan, P. F., O'Dwyer, K. M., Palmer, L. M., Ambrad, J. D., Ingraham, K. A., So, C., Lonetto, M. A., Biswas, S., Rosenberg, M., Holmes, D. J., and Zalacain, M. (2003) Characterization of a novel fucose-regulated promoter (PfcsK) suitable for gene essentiality and antibacterial mode-of-action studies in Streptococcus pneumoniae. J Bacteriol. 185, 2051–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I., and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature. 427, 737–40.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular GeneticsUniversity of Massachusetts Medical SchoolMAUSA

Personalised recommendations