Skip to main content

Ins and Outs of Mycobacterial Plasmids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 465))

Abstract

The importance of plasmids for molecular research cannot be underestimated. These double-stranded DNA units that replicate independently of the chromosomal DNA are as valuable to bacterial geneticists as a carpenter’s hammer. Fortunately, today the mycobacterial research community has a number of these genetic tools at its disposal, and the development of these tools has greatly accelerated the study of mycobacterial pathogens. However, working with mycobacterial cloning plasmids is still not always as straightforward as working with Escherichia coli plasmids, and therefore a number of precautions and potential pitfalls will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jucker, M. T. & Falkinham, J. O. III. (1990). Epidemiology of infection by nontuberculous mycobacteria IX. Evidence for two DNA homology groups among small plasmids in Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. Am. Rev. Respir. Dis. 142, 858–62.

    PubMed  CAS  Google Scholar 

  2. Kirby, C., Waring, A., Griffin, T. J., Falkinham, J. O. III, Grindley, N. D. & Derbyshire, K. M. (2002). Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue. Mol. Microbiol. 43, 173–86.

    Google Scholar 

  3. Zainuddin, Z. F. & Dale, J. W. (1990). Does Mycobacterium tuberculosis have plasmids? Tubercle 71, 43–9.

    Article  PubMed  CAS  Google Scholar 

  4. Le Dantec, C., Winter, N., Gicquel, B., Vincent, V. & Picardeau, M. (2001). Genomic sequence and transcriptional analysis of a 23-kilobase mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J. Bacteriol. 183, 2157–64.

    Article  PubMed  Google Scholar 

  5. Stinear, T. P., Pryor, M. J., Porter, J. L. & Cole, S. T. (2005). Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology 151, 683–92.

    Article  PubMed  CAS  Google Scholar 

  6. Labidi, A., David, H. L. & Roulland-Dussoix, D. (1985). Restriction endonuclease mapping and cloning of Mycobacterium fortuitum var. fortuitum plasmid pAL5000. Ann. Inst. Pasteur. Microbiol. 136B, 209–15.

    Article  PubMed  CAS  Google Scholar 

  7. Pashley, C. & Stoker, N. G. Plasmids in mycobacteria. In: Hatfull, G. F. and Jacobs, W.R. (eds.), Molecular Genetics of Mycobacteria, ASM Press, 2000: 55–68.

    Google Scholar 

  8. Crawford, J. T. & Bates, J. H. (1986). Analysis of plasmids in Mycobacterium avium-intracellulare isolates from persons with acquired immunodeficiency syndrome. Am. Rev. Respir. Dis. 134, 659–61.

    PubMed  CAS  Google Scholar 

  9. Gangadharam, P. R., Perumal, V. K., Crawford, J. T. & Bates, J. H. (1988). Association of plasmids and virulence of Mycobacterium avium complex. Am. Rev. Respir. Dis. 137, 212–4.

    Article  PubMed  CAS  Google Scholar 

  10. Stinear, T. P., Mve-Obiang, A., Small, P. L., Frigui, W., Pryor, M. J., Brosch, R., Jenkin, G. A., Johnson, P. D., Davies, J. K., Lee, R. E., Adusumilli, S., Garnier, T., Haydock, S. F., Leadlay, P. F. & Cole, S. T. (2004). Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc. Natl. Acad. Sci. U. S. A. 101, 1345–9.

    Article  PubMed  CAS  Google Scholar 

  11. George, K. M., Chatterjee, D., Gunawardana, G., Welty, D., Hayman, J., Lee, R. & Small, P. L. (1999). Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283, 854–7.

    Article  PubMed  CAS  Google Scholar 

  12. Ranger, B. S., Mahrous, E. A., Mosi, L., Adusumilli, S., Lee, R. E., Colorni, A., Rhodes, M. & Small, P. L. (2006). Globally distributed mycobacterial fish pathogens produce a novel plasmid-encoded toxic macrolide, mycolactone F. Infect. Immun. 74(11), 6037–45.

    Google Scholar 

  13. Harth, G., Maslesa-Galic, S. & Horwitz, M. A. (2004). A two-plasmid system for stable, selective-pressure-independent expression of multiple extracellular proteins in mycobacteria. Microbiology 150, 2143–51.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, J., Parsons, L. M. & Derbyshire, K. M. (2003). Unconventional conjugal DNA transfer in mycobacteria. Nat. Genet. 34, 80–4.

    Article  PubMed  CAS  Google Scholar 

  15. Gormley, E. P. & Davies, J. (1991). Transfer of plasmid RSF1010 by conjugation from Escherichia colito Streptomyces lividans and Mycobacterium smegmatis. J. Bacteriol. 173, 6705–8.

    PubMed  CAS  Google Scholar 

  16. Stolt, P. & Stoker, N. G. (1996). Functional definition of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid pAL5000. Microbiology 142(Pt 10), 2795–802.

    Article  PubMed  CAS  Google Scholar 

  17. Bachrach, G., Colston, M. J., Bercovier, H., Bar-Nir, D., Anderson, C. & Papavinasasundaram, K. G. (2000). A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology 146(Pt 2), 297–303.

    PubMed  CAS  Google Scholar 

  18. Stover, C. K., de la Cruz, V. F., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bennett, L. T., Bansal, G. P., Young, J. F., Lee, M. H., Hatfull, G. F. & et al. (1991). New use of BCG for recombinant vaccines. Nature 351, 456–60.

    Article  PubMed  CAS  Google Scholar 

  19. Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T. & Jacobs, W. R., Jr. (1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–9.

    Article  PubMed  CAS  Google Scholar 

  20. Al-Zarouni, M. & Dale, J. W. (2002). Expression of foreign genes in Mycobacterium bovisBCG strains using different promoters reveals instability of the hsp60 promoter for expression of foreign genes in Mycobacterium bovisBCG strains. Tuberculosis(Edinb) 82, 283–91.

    Article  Google Scholar 

  21. Parish, T., Roberts, G., Laval, F., Schaeffer, M., Daffe, M. & Duncan, K. (2007). Functional Complementation of the Essential Gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but Not Escherichia coli fabG. J. Bacteriol. 189, 3721–8.

    Article  PubMed  CAS  Google Scholar 

  22. Parish, T., Liu, J., Nikaido, H. & Stoker, N. G. (1997). A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J. Bacteriol. 179, 7827–33.

    PubMed  CAS  Google Scholar 

  23. Carroll, P., Muttucumaru, D. G. & Parish, T. (2005). Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl. Environ. Microbiol. 71, 3077–84.

    Article  PubMed  CAS  Google Scholar 

  24. Ehrt, S., Guo, X. V., Hickey, C. M., Ryou, M., Monteleone, M., Riley, L. W. & Schnappinger, D. (2005). Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res. 33, e21.

    Article  PubMed  Google Scholar 

  25. Blokpoel, M. C., Murphy, H. N., O'Toole, R., Wiles, S., Runn, E. S., Stewart, G. R., Young, D. B. & Robertson, B. D. (2005). Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res. 33, e22.

    Article  PubMed  Google Scholar 

  26. Das Gupta, S. K., Bashyam, M. D. & Tyagi, A. K. (1993). Cloning and assessment of mycobacterial promoters by using a plasmid shuttle vector. J. Bacteriol. 175, 5186–92.

    PubMed  CAS  Google Scholar 

  27. Timm, J., Lim, E. M. & Gicquel, B. (1994). Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions tolacZ: the pJEM series. J. Bacteriol. 176, 6749–53.

    PubMed  CAS  Google Scholar 

  28. Valdivia, R. H., Hromockyj, A. E., Monack, D., Ramakrishnan, L. & Falkow, S. (1996). Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene 173, 47–52.

    Article  PubMed  CAS  Google Scholar 

  29. Kenney, T. J. & Churchward, G. (1996). Genetic analysis of the Mycobacterium smegmatis rpsL promoter. J. Bacteriol. 178, 3564–71.

    PubMed  CAS  Google Scholar 

  30. Guilhot, C., Gicquel, B. & Martin, C. (1992). Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol. Lett. 77, 181–6.

    Article  PubMed  CAS  Google Scholar 

  31. Guilhot, C., Otal, I., Van Rompaey, I., Martin, C. & Gicquel, B. (1994). Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J. Bacteriol. 176, 535–9.

    Google Scholar 

  32. Pelicic, V., Reyrat, J. M. & Gicquel, B. (1996). Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol. Microbiol. 20, 919–25.

    Article  PubMed  CAS  Google Scholar 

  33. Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R. Jr., Gicquel, B. & Guilhot, C. (1997). Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 94, 10955–60.

    Article  PubMed  CAS  Google Scholar 

  34. Papavinasasundaram, K. G., Colston, M. J. & Davis, E. O. (1998). Construction and complementation of a recAdeletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol. Microbiol. 30, 525–34.

    Article  PubMed  CAS  Google Scholar 

  35. Pedulla, M. L. & Hatfull, G. F. (1998). Characterization of the mIHFgene of Mycobacterium smegmatis. J. Bacteriol. 180, 5473–7.

    PubMed  CAS  Google Scholar 

  36. Pavelka, M. S. Jr. & Jacobs, W. R. Jr. (1999). Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovisbacillus Calmette-Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J. Bacteriol. 181, 4780–9.

    PubMed  CAS  Google Scholar 

  37. Parish, T. & Stoker, N. G. (2000). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146(Pt 8), 1969–75.

    PubMed  CAS  Google Scholar 

  38. Sander, P., Meier, A. & Bottger, E. C. (1995). rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol. 16, 991–1000.

    Article  PubMed  CAS  Google Scholar 

  39. Bardarov, S., Kriakov, J., Carriere, C., Yu, S., Vaamonde, C., McAdam, R. A., Bloom, B. R., Hatfull, G. F. & Jacobs, W. R. Jr. (1997). Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 94, 10961–6.

    Article  PubMed  CAS  Google Scholar 

  40. Rubin, E. J., Akerley, B. J., Novik, V. N., Lampe, D. J., Husson, R. N. & Mekalanos, J. J. (1999). In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. U. S. A. 96, 1645–50.

    Article  PubMed  CAS  Google Scholar 

  41. Snapper, S. B., Lugosi, L., Jekkel, A., Melton, R. E., Kieser, T., Bloom, B. R. & Jacobs, W. R. Jr. (1988). Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad. Sci. U. S. A. 85, 6987–91.

    Article  PubMed  CAS  Google Scholar 

  42. Mahenthiralingam, E., Marklund, B. I., Brooks, L. A., Smith, D. A., Bancroft, G. J. & Stokes, R. W. (1998). Site-directed mutagenesis of the 19-kilodalton lipoprotein antigen reveals no essential role for the protein in the growth and virulence of Mycobacterium intracellulare. Infect. Immun. 66, 3626–34.

    PubMed  CAS  Google Scholar 

  43. Murry, J., Sassetti, C. M., Moreira, J., Lane, J. & Rubin, E. J. (2005). A new site-specific integration system for mycobacteria. Tuberculosis (Edinb) 85, 317–23.

    Article  CAS  Google Scholar 

  44. Springer, B., Sander, P., Sedlacek, L., Ellrott, K. & Bottger, E. C. (2001). Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int. J. Med. Microbiol. 290, 669–75.

    Article  PubMed  CAS  Google Scholar 

  45. Vultos, T. D., Mederle, I., Abadie, V., Pimentel, M., Moniz-Pereira, J., Gicquel, B., Reyrat, J. M. & Winter, N. (2006). Modification of the mycobacteriophage Ms6 attP core allows the integration of multiple vectors into different tRNAala T-loops in slow- and fast-growing mycobacteria. BMC Mol. Biol. 7, 47.

    Article  PubMed  Google Scholar 

  46. Saviola, B. & Bishai, W. R. (2004). Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res. 32, e11.

    Article  PubMed  Google Scholar 

  47. Pashley, C. A. & Parish, T. (2003). Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol. Lett. 229, 211–5.

    Article  PubMed  CAS  Google Scholar 

  48. Lewis, J. A. & Hatfull, G. F. (2000). Identification and characterization of mycobacteriophage L5 excisionase. Mol. Microbiol. 35, 350–60.

    Article  PubMed  CAS  Google Scholar 

  49. Parish, T. & Stoker, N. G. Electroporation of mycobacteria. In Nickoloff, J. A. (ed.), Methods in Molecular Biology: Electroporation Protocols for Microorganisms, Vol. 47. Humana Press, 1995: 237–52.

    Google Scholar 

  50. Consaul, S. A. & Pavelka, M. S. Jr. (2004). Use of a novel allele of the Escherichia coli aacC4 aminoglycoside resistance gene as a genetic marker in mycobacteria. FEMS Microbiol. Lett. 234, 297–301.

    Article  PubMed  CAS  Google Scholar 

  51. Goto, Y., Taniguchi, H., Udou, T., Mizuguchi, Y. & Tokunaga, T. (1991). Development of a new host vector system in mycobacteria. FEMS Microbiol. Lett. 67, 277–82.

    Article  PubMed  CAS  Google Scholar 

  52. Beggs, M. L., Crawford, J. T. & Eisenach, K. D. (1995). Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7. J. Bacteriol. 177, 4836–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farahnaz Movahedzadeh PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Movahedzadeh, F., Bitter, W. (2009). Ins and Outs of Mycobacterial Plasmids. In: Parish, T., Brown, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 465. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-207-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-207-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-889-8

  • Online ISBN: 978-1-59745-207-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics