Skip to main content

G Protein-Coupled Receptors Disrupted in Human Genetic Disease

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 448))

Summary

Genetic variation in G protein-coupled receptors (GPCRs) results in the disruption of GPCR function in a wide variety of human genetic diseases. In vitro strategies have been used to elucidate the molecular pathologies that underlie naturally occurring GPCR mutations. Various degrees of inactive, overactive, or constitutively active receptors have been identified. These mutations often alter ligand binding, G protein coupling, receptor desensitization, and receptor recycling. The role of inactivating and activating calcium-sensing receptor (CASR) muta tions is discussed with respect to familial hypocalciuric hypercalemia (FHH) and autosomal dominant hypocalemia (ADH). Among ADH mutations, those associ ated with tonic–clonic seizures are discussed. Other receptors discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone, luteinizing hormone, gonadotropin-releasing hormone (GnRHR), adren-ocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA). Diseases caused by mutations that disrupt GPCR function are significant because they might be selectively targeted by drugs that rescue altered receptors. Examples of drug development based on targeting GPCRs mutated in disease include the calcimimetics used to compensate for some CASR mutations, obesity therapeutics targeting melanocortin receptors, interventions that alter GnRHR loss from the cell surface in idiopathic hypogonadotropic hypogo nadism and novel drugs that might rescue the P2RY12 receptor in a rare bleeding disorder. The discovery of GPRA suggests that drug screens against variant GPCRs may identify novel drugs. This review of the variety of GPCRs that are disrupted in monogenic disease provides the basis for examining the significance of common pharmacogenetic variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiegel, A. M. (1998) Introduction to G-protein-coupled signal transduction and human disease, in G proteins, receptors, and disease (A. M. Speigel, ed.), Humana Press, Totowa, NJ, pp. 1–21.

    Google Scholar 

  2. Rana, B. K., Shiina, T., and Insel, P. A. (2001) Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 41, 593–624.

    CAS  PubMed  Google Scholar 

  3. Spiegel, A. M., and Weinstein, L. S. (2004) Inherited diseases involving G proteins and G protein-coupled receptors. Annu. Rev. Med. 55, 27–39.

    CAS  PubMed  Google Scholar 

  4. Tan, C. M., Brady, A. E., Nickols, H. H., Wang, Q., and Limbird, L. E. (2004) Membrane trafficking of G protein-coupled receptors. Annu. Rev. Pharmacol. Tox. 44, 559–609.

    CAS  Google Scholar 

  5. Spiegel, A. M. (1996) Defects in G protein-coupled signal transduction in human disease. Annu. Rev. Physiol. 58, 143–170.

    CAS  PubMed  Google Scholar 

  6. Milligan, G. (2002) Strategies to identify ligands for orphan G-protein-coupled receptors. Biochem. Soc. Trans. 30, 789–793.

    CAS  PubMed  Google Scholar 

  7. Small, K. M., Mcgraw, D. W., and Liggett, S. B. (2003) Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu. Rev. Pharmacol. Toxicol. 43, 381–411.

    CAS  PubMed  Google Scholar 

  8. Milligan, G., Stevens, P. A., Ramsay, D., and Mclean, A. J. (2002) Ligand rescue of constitu-tively active mutant receptors. Neurosignals. 11, 29–33.

    CAS  PubMed  Google Scholar 

  9. Seifert, R., and Wenzel-Seifert, K. (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 366, 381–416.

    CAS  PubMed  Google Scholar 

  10. Bird, A. C. (1992) Investigation of disease mechanisms in retinitis-pigmentosa. Ophthal. Paediatr. Genet. 13, 57–66.

    CAS  Google Scholar 

  11. Almaghtheh, M., Gregory, C., Inglehearn, C., Hardcastle, A., and Bhattacharya, S. (1993) Rhodopsin mutations in autosomal-dominant retinitis-pigmentosa. Hum. Mutat. 2, 249–255.

    CAS  Google Scholar 

  12. Rana, B. K., Shiina, T., and Insel, P. A. (2001) Genetic variations and polymorphisms of G protein-coupled receptors: functional and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 41, 593–624.

    CAS  PubMed  Google Scholar 

  13. Rim, J., and Oprian, D. D. (1995) Constitutive activation of opsin–interaction of mutants with rhodopsin kinase and arrestin. Biochemistry. 34, 11938–11945.

    CAS  PubMed  Google Scholar 

  14. Sullivan, J. M., Scott, K. M., Falls, H. F., Richards, J. E., and Sieving, P. A. (1993) A novel rhodopsin mutation at the retinal binding-site (Lys-296-Met) in Adrp. Invest. Ophthalmol. Vis. Sci. 34, 1149.

    Google Scholar 

  15. Sullivan, L. J., Makris, G. S., Dickinson, P., et al. (1993) A new codon 15 rhodopsin gene mutation in autosomal-dominant retinitis-pigmentosa is associated with sectorial disease. Arch. Ophthalmol. 111, 1512–1517.

    CAS  PubMed  Google Scholar 

  16. Bunge, S., Wedemann, H., David, D., et al. (1993) Molecular analysis and genetic-mapping of the rhodopsin gene in families with autosomal-dominant retinitis-pigmentosa. Genomics. 17, 230–233.

    CAS  PubMed  Google Scholar 

  17. Farrar, G. J., Mcwilliam, P., Bradley, D. G., et al. (1990) Autosomal dominant retinitis-pigmentosa–linkage to rhodopsin and evidence for genetic-heterogeneity. Genomics. 8, 35–40.

    CAS  PubMed  Google Scholar 

  18. Inglehearn, C. F., Lester, D. H., Bashir, R., et al. (1992) Recombination between rhodopsin and locus D3S47 (C17) in rhodopsin retinitis-pigmentosa families. Am. J. Hum. Genet. 50, 590–597.

    CAS  PubMed  Google Scholar 

  19. Neidhardt, J., Barthelmes, D., Farahmand, F., Fleischhauer, J. C., and Berger, W. (2006) Different amino acid substitutions at the same position in rhodopsin lead to distinct pheno types. Invest. Ophthalmol. Vis. Sci. 47, 1630–1635.

    PubMed  Google Scholar 

  20. Andres, A., Kosoy, A., Garriga, P., and Manyosa, J. (2001) Mutations at position 125 in trans membrane helix III of rhodopsin affect the structure and signalling of the receptor. Eur. J. Biochem. 268, 5696–5704.

    CAS  PubMed  Google Scholar 

  21. Andreoli, T. E. (1998) Diseases of receptors: Introductory comments. Am. J. Med. 105, 242–243.

    CAS  PubMed  Google Scholar 

  22. Chen, C. K., Zhang, K., Church-Kopish, J., et al. (2001) Characterization of human GRK7 as a potential cone opsin kinase. Mol. Vis. 7, 305–313.

    CAS  PubMed  Google Scholar 

  23. Dryja, T. P. (2000) Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 130, 547–563.

    CAS  PubMed  Google Scholar 

  24. Hayashi, T., Gekka, T., Takeuchi, T., Goto-Omoto, S., and Kitahara, K. (2007) A novel homozygous GRK1 mutation (P391H) in 2 siblings with Oguchi disease with markedly reduced cone responses. Ophthalmology. 114, 134–141.

    PubMed  Google Scholar 

  25. Duprez, L., Parma, J., Vansande, J., et al. (1994) Germline mutations in the thyrotropin recep tor gene cause non-autoimmune autosomal-dominant hyperthyroidism. Nat. Genet. 7, 396–401.

    CAS  PubMed  Google Scholar 

  26. Arturi, F., Capula, C., Chiefari, E., Filetti, S., and Russo, D. (1998) Thyroid hyperfunctioning adenomas with and without Gsp/TSH receptor mutations show similar clinical features. Exp. Clin. Endocrinol. Diabetes. 106, 234–236.

    CAS  PubMed  Google Scholar 

  27. Kaczur, V., Takacs, M., Szalai, C., et al. (2000) Analysis of the genetic variability of the 1st (CCC/ACC, P52T) and the 10th exons (bp 1012–1704) of the TSH receptor gene in Graves' disease. Eur. J. Immunogenet. 27, 17–23.

    CAS  PubMed  Google Scholar 

  28. Biebermann, H., Schoneberg, T., Hess, C., Germak, J., Gudermann, T., and Gruters, A. (2001) The first activating TSH receptor mutation in transmembrane domain 1 identified in a family with nonautoimmune hyperthyroidism. J. Clin. Endocrinol. Metab. 86, 4429–4433.

    CAS  PubMed  Google Scholar 

  29. Jordan, N., Williams, N., Gregory, J. W., Evans, C., Owen, M., and Ludgate, M. (2003) The W546X mutation of the thyrotropin receptor gene: potential major contributor to thyroid dys function in a Caucasian population. J. Clin. Endocrinol. Metab. 88, 1002–1005.

    CAS  PubMed  Google Scholar 

  30. Farid, N. R., and Szkudlinski, M. W. (2004) Minireview: structural and functional evolution of the thyrotropin receptor. Endocrinology. 145, 4048–4057.

    CAS  PubMed  Google Scholar 

  31. Polak, M., Sura-Trueba, S., Chauty, A., Szinnai, G., Carre, A., and Castanet, M. (2004) Molecular mechanisms of thyroid dysgenesis. Horm. Res. 62, 14–21.

    CAS  PubMed  Google Scholar 

  32. Gabriel, E. M., Bergert, E. R., Grant, C. S., van Heerden, J. A., Thompson, G. B., and Morris, J. C. (1999) Germline polymorphism of codon 727 of human thyroid-stimulating hormone receptor is associated with toxic multinodular goiter. J. Clin. Endocrinol. Metab. 84, 3328–3335.

    CAS  PubMed  Google Scholar 

  33. Biebermann, H., Schoneberg, T., Krude, H., Gudermann, T., and Gruters, A. (2000) Constitutively activating TSH-receptor mutations as a molecular cause of non-autoimmune hyperthyroidism in childhood. Arch. Surg. 385, 390–392.

    CAS  Google Scholar 

  34. Karges, B., Krause, G., Homoki, J., Debatin, K. M., de, R. N., and Karges, W. (2005) TSH receptor mutation V509A causes familial hyperthyroidism by release of interhelical con straints between transmembrane helices TMH3 and TMH5. J. Endocrinol. 186, 377–385.

    CAS  PubMed  Google Scholar 

  35. Tonacchera, M., Agretti, P., Chiovato, L., et al. (2000) Activating thyrotropin receptor muta tions are present in nonadenomatous hyperfunctioning nodules of toxic or autonomous multi nodular goiter. J. Clin. Endocrinol. Metab. 85, 2270–2274.

    CAS  PubMed  Google Scholar 

  36. Pohlenz, J., Pfarr, N., Kruger, S., and Hesse, V. (2006) Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R). Acta Paediatr. 95, 1685–1687.

    PubMed  Google Scholar 

  37. Sadee, W., Hoeg, E., Lucas, J., and Wang, D. X. (2001) Genetic variations in human G protein-coupled receptors: Implications for drug therapy. AAPS Pharmsci. 3, E22. DOI: 10.1208/ps030322.

    Google Scholar 

  38. Kaczur, V., Puskas, L. G., Takacs, M., et al. (2003) Evolution of the thyrotropin receptor: a G protein coupled receptor with an intrinsic capacity to dimerize. Mol. Genet. Metab. 78, 275–290.

    CAS  PubMed  Google Scholar 

  39. Bodenner, D. L., and Lash, R. W. (1998) Thyroid disease mediated by molecular defects in cell surface and nuclear receptors. Am. J. Med. 105, 524–538.

    CAS  PubMed  Google Scholar 

  40. Yun, F. H., Wong, B. Y., Chase, M., et al. (2007) Genetic variation at the calcium-sensing receptor (CASR) locus: Implications for clinical molecular diagnostics. Clin. Biochem. Biochem. 40, 551–556

    CAS  Google Scholar 

  41. Pidasheva, S., D'Souza-Li, L., Canaff, L., Cole, D. E. C., and Hendy, G. N. (2004) CASRdb: Calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum. Mutat. 24, 107–111.

    CAS  PubMed  Google Scholar 

  42. Burren, C. P., Curley, A., Christie, P., Rodda, C. P., and Thakker, R. V. (2005) A family with autosomal dominant hypocalcaemia with hypercalciuria (ADHH): mutational analysis, pheno typic variability and treatment challenges. J. Pediatr. Endocrinol. Metab. 18, 9–99.

    Google Scholar 

  43. Hendy, G. N., Minutti, C., Canaff, L., et al. (2003) Recurrent familial hypocalcemia due to germline mosaicism for an activating mutation of the calcium-sensing receptor gene. J. Clin. Endocrinol. Metab. 88, 3674–3681.

    CAS  PubMed  Google Scholar 

  44. Hendy, G. N., D'Souza-Li, L., Yang, B., Canaff, L., and Cole, D. E. C. (2000) Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum. Mutat. 16, 281–296.

    CAS  PubMed  Google Scholar 

  45. Gunn, I. R., and Gaffney, D. (2004) Clinical and laboratory features of calcium-sensing recep tor disorders: a systematic review. Ann. Clin. Biochem. 41, 441–458.

    CAS  PubMed  Google Scholar 

  46. Marx, S. J., and Simonds, W. F. (2005) Hereditary hormone excess: genes, molecular path ways, and syndromes. Endocr. Rev. 26, 615–661.

    CAS  PubMed  Google Scholar 

  47. Chou, Y. H. W., Brown, E. M., Levi, T., et al. (1992) The gene responsible for familial hypoc alciuric hypercalcemia maps to chromosome-3Q in four unrelated families. Nat. Genet. 1, 295–300.

    CAS  PubMed  Google Scholar 

  48. Leech, C., Lohse, P., Stanojevic, V., Lechner, A., Goke, B., and Spitzweg, C. (2006) Identification of a novel inactivating R465Q mutation of the calcium-sensing receptor. Biochem. Biophys. Res. Commun. 342, 996–1002.

    CAS  PubMed  Google Scholar 

  49. Janicic, N., Pausova, Z., Cole, D. E. C., and Hendy, G. N. (1995) Insertion of an Alu sequence in the Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am. J. Hum. Genet. 56, 880–886.

    CAS  PubMed  Google Scholar 

  50. Cole, D. E. C., Janicic, N., Salisbury, S. R., and Hendy, G. N. (1997) Neonatal severe hyper-parathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating alu insertion mutation of the cal cium-sensing receptor gene. Am. J. Med. Genet. 71, 202–210.

    CAS  PubMed  Google Scholar 

  51. Ray, K., Hauschild, B. C., Steinbach, P. J., Goldsmith, P. K., Hauache, O., and Spiegel, A. M. (1999) Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca2+ receptor critical for dimerization–implications for function of monomeric Ca2+ receptor. J. Biol. Chem. 274, 27642–27650.

    CAS  PubMed  Google Scholar 

  52. Lienhardt, A., Bai, M., Lagarde, J. P., et al. (2001) Activating mutations of the calcium-sensing receptor: management of hypocalcemia. J. Clin. Endocrinol. Metab. 86, 5313–5323.

    CAS  PubMed  Google Scholar 

  53. Hough, T. A., Bogani, D., Cheeseman, M. T., Favor, J., Nesbit, M. A., Thakker R. V., Lyon, M. F. 2004. Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc. Natl. Acad. Sci. U. S. A. 101(37):13566–71.

    CAS  PubMed  Google Scholar 

  54. McLeod, D. R., Hanley, D. A., McArthur, R. G. 1989. Autosomal dominant hypoparathyroidism with intracranial calcification outside the basal ganglia. Am. J. Med. Genet. 32:32–5.

    CAS  PubMed  Google Scholar 

  55. Zhang, P., Jobert, A. S., Couvineau, A., and Silve, C. (1998) Homozygous inactivating muta tion in the parathyroid hormone parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J. Clin. Endocrinol. Metab. 83, 3365–3368.

    CAS  PubMed  Google Scholar 

  56. Cohen, D. P., Thaw, C. N., Varma, A., Gershengorn, M. C., and Nussenzveig, D. R. (1997) Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity. Endocrinology 138, 1400–1405.

    CAS  PubMed  Google Scholar 

  57. Calvi, L. M., and Schipani, E. (2000) The PTH/PTHrP receptor in Jansen's metaphyseal chon drodysplasia. J. Endocrinol. Invest. 23, 545–554.

    CAS  PubMed  Google Scholar 

  58. Tao, Y. X. (2006) Inactivating mutations of G protein-coupled receptors and diseases: struc ture-function insights and therapeutic implications. Pharmacol. Ther. 111, 949–973.

    CAS  PubMed  Google Scholar 

  59. Hopyan, S., Gokgoz, N., Poon, R., et al. (2002) A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat. Genet. 30, 306–310.

    PubMed  Google Scholar 

  60. Duchatelet, S., Ostergaard, E., Cortes, D., Lemainque, A., and Julier, C. (2005) Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syn dromes. Hum. Mol. Genet. 14, 1–5.

    CAS  PubMed  Google Scholar 

  61. Kokkotou, E. G., Tritos, N. A., Mastaitis, J. W., Slieker, L., and Maratos-Flier, E. (2001) Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology. 142, 680–686.

    CAS  PubMed  Google Scholar 

  62. Segal-Lieberman, G., Bradley, R. L., Kokkotou, E., et al. (2003) Melanin-concentrating hor mone is a critical mediator of the leptin-deficient phenotype. Proc. Natl. Acad. Sci. U. S. A. 100, 10085–10090.

    CAS  PubMed  Google Scholar 

  63. Segal-Lieberman, G., Trombly, D. J., Juthani, V., Wang, X. M., and Maratos-Flier, E. (2003) NPY ablation in C57BL/6 mice leads to mild obesity and to an impaired refeeding response to fasting. Am. J. Physiol. Endocrinol. Metab. 284, E1131–E1139.

    CAS  PubMed  Google Scholar 

  64. Xu, Y. L., Jackson, V. R., and Civelli, O. (2004) Orphan G protein-coupled receptors and obesity. Eur. J. Pharmacol. 500, 243–253.

    CAS  PubMed  Google Scholar 

  65. Vaisse, C., Clement, K., Guy-Grand, B., and Froguel, P. (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114.

    CAS  PubMed  Google Scholar 

  66. Lubrano-Berthelier, C., Le Stunff, C., Bougneres, P., and Vaisse, C. (2004) Clinical case seminar–a homozygous null mutation delineates the role of the melanocortin-4 receptor in humans. J. Clin. Endocrinol. Metab. 89, 2028–2032.

    CAS  PubMed  Google Scholar 

  67. Yeo, G. S. H., Farooqi, I. S., Aminian, S., Halsall, D. J., Stanhope, R. C., and O'Rahilly, S. (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112.

    CAS  PubMed  Google Scholar 

  68. Yeo, G. S. H., Farooqi, I. S., Challis, B. G., Jackson, R. S., and O'Rahilly, S. (2000) The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models. Q. J. M. 93, 7–14.

    CAS  Google Scholar 

  69. Yeo, G. S. H., Lank, E. J., Farooqi, I. S., Keogh, J., Challis, B. G., and O'Rahilly, S. (2003) Mutations in the human melanocortin-4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum. Mol. Genet. 12, 561–574.

    CAS  PubMed  Google Scholar 

  70. Lubrano-Berthelier, C., Cavazos, M., Lestunff, C., Bougneres, P., and Vaisse, C. (2003) Mutations in the transcriptionally essential region of the MC4R promoter are not a cause of severe obesity in humans. Diabetes. 52, A397.

    Google Scholar 

  71. O'Rahilly, S., Yeo, G. S. H., and Farooqi, I. S. (2004) Melanocortin receptors weigh in. Nat. Med. 10, 351–352.

    PubMed  Google Scholar 

  72. Adan, R. A. H., and Kas, M. J. H. (2003) Inverse agonism gains weight. Trends Pharmacol. Sci. 24, 315–321.

    CAS  PubMed  Google Scholar 

  73. Marsh, D. J., Hollopeter, G., Huszar, D., et al. (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21, 119–122.

    CAS  PubMed  Google Scholar 

  74. Ste Marie, L., Miura, G. I., Marsh, D. J., Yagaloff, K., and Palmiter, R. D. (2000) A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc. Natl. Acad. Sci. U. S. A. 97, 12339–12344.

    CAS  Google Scholar 

  75. Branson, R., Potoczna, N., Kral, J. G., Lentes, K., Hoehe, M. R., and Horber, F. F. (2003) Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N. Engl. J. Med. 348, 1096–1103.

    CAS  PubMed  Google Scholar 

  76. List, J. F., and Habener, J. F. (2003) Defective melanocortin 4 receptors in hyperphagia and morbid obesity. N. Engl. J. Med. 348, 1160–1163.

    PubMed  Google Scholar 

  77. Farooqi, I. S., Keogh, J. M., Yeo, G. S. H., Lank, E. J., Cheetham, T., and O'Rahilly, S. (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095.

    CAS  PubMed  Google Scholar 

  78. Vaisse, C., Clement, K., Durand, E., Hercberg, S., Guy-Grand, B., and Froguel, P. (2000) Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262.

    CAS  PubMed  Google Scholar 

  79. Fisher, M. J., Backer, R. T., Collado, I., et al. (2005) Privileged structure based ligands for melanocortin receptors–substituted benzylic piperazine derivatives. Bioorg. Med. Chem. Lett. 15, 4973–4978.

    CAS  PubMed  Google Scholar 

  80. Kuklish, S. L., Backer, R. T., Briner, K., et al. (2006) Privileged structure based ligands for melanocortin receptors–4,4-disubstituted piperidine derivatives. Bioorg. Med. Chem. Lett. 16, 3843–3846.

    CAS  PubMed  Google Scholar 

  81. Nargund, R. P., Strack, A. M., and Fong, T. M. (2006) Melanocortin-4 receptor (MC4R) ago nists for the treatment of obesity. J. Med. Chem. 49, 4035–4043.

    CAS  PubMed  Google Scholar 

  82. Jiang, W., Tucci, F. C., Chen, C. W., et al. (2006) Arylpropionylpiperazines as antagonists of the human melanocortin-4 receptor. Bioorg. Med. Chem. Lett. 16, 4674–4678.

    CAS  PubMed  Google Scholar 

  83. Gromoll, J., Simoni, M., Nordhoff, V., Behre, H. M., De Geyter, C., and Nieschlag, E. (1996) Functional and clinical consequences of mutations in the FSH receptor. Mol. Cell. Endocrinol. 125, 177–182.

    CAS  PubMed  Google Scholar 

  84. Simoni, M., Nieschlag, E., and Gromoll, J. (2002) Isoforms and single nucleotide polymor phisms of the FSH receptor gene: implications for human reproduction. Hum. Reprod. Update. 8, 413–421.

    CAS  PubMed  Google Scholar 

  85. Laven, J. S. E., Mulders, A. G. M. G., Suryandari, D. A., et al. (2003) Follicle-stimulating hormone receptor polymorphisms in women with normogonadotropic anovulatory infertility. Fertil. Steril. 80, 986–992.

    PubMed  Google Scholar 

  86. Gromoll, J., Simoni, M., and Nieschlag, E. (1996) An activating mutation of the follicle-stimu lating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J. Clin. Endocrinol. Metab. 81, 1367–1370.

    CAS  PubMed  Google Scholar 

  87. Simoni, M., Gromoll, J., and Nieschlag, E. (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr. Rev. 18, 739–773.

    CAS  PubMed  Google Scholar 

  88. Simoni, M., Weinbauer, G. F., Gromoll, J., and Nieschlag, E. (1999) Role of FSH in male gonadal function. Ann. Endocrinol. (Paris). 60, 102–106.

    CAS  Google Scholar 

  89. De, L. A., Montanelli, L., Van, D. J., et al. (2006) Presence and absence of follicle-stimulating hormone receptor mutations provide some insights into spontaneous ovarian hyperstimulation syndrome physiopathology. J. Clin. Endocrinol. Metab. 91, 555–562.

    Google Scholar 

  90. Meehan, T. P., and Narayan, P. (2007) Constitutively active luteinizing hormone receptors: consequences of in vivo expression. Mol. Cell. Endocrinol. 260–262, 294–300.

    PubMed  Google Scholar 

  91. Iiri, T., Herzmark, P., Nakamoto, J. M., Vandop, C., and Bourne, H. R. (1994) Rapid Gdp release from G(S-alpha) in patients with gain and loss of endocrine function. Nature. 371, 164–168.

    CAS  PubMed  Google Scholar 

  92. Gromoll, J., Schulz, A., Borta, H., et al. (2002) Homozygous mutation within the conserved Ala-Phe-Asn-Glu-Thr motif of exon 7 of the LH receptor causes male pseudohermaphro-ditism. Eur. J. Endocrinol. 147, 597–608.

    CAS  PubMed  Google Scholar 

  93. Schoneberg, T., Schulz, A., and Gudermann, T. (2002) The structural basis of G-protein-coupled receptor function and dysfunction in human diseases. Rev. Physiol. Biochem. Pharmacol. 144, 143–227.

    CAS  PubMed  Google Scholar 

  94. Tsigos, C., Latronico, C., and Chrousos, G. P. (1997) Luteinizing hormone resistance syn dromes. Ann. N. Y. Acad. Sci. 816, 263–273.

    CAS  PubMed  Google Scholar 

  95. Latronico, A. C., Anasti, J., Arnhold, I. J., et al. (1995) A novel mutation of the luteinizing hormone receptor gene causing male gonadotropin-independent precocious puberty. J. Clin. Endocrinol. Metab. 80, 2490–2494.

    CAS  PubMed  Google Scholar 

  96. Kosugi, S., Van Dop, C., Geffner, M. E., et al. (1995) Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty. Hum. Mol. Genet. 4, 183–188.

    CAS  PubMed  Google Scholar 

  97. Seminara, S. B., Hayes, F. J., and Crowley, W. F. (1998) Gonadotropin-releasing hormone deficiency in the human (Idiopathic hypogonadotropic hypogonadism and Kallmann's syn drome): Pathophysiological and genetic considerations. Endocr. Rev. 19, 521–539.

    CAS  PubMed  Google Scholar 

  98. Millar, R. P., Lu, Z. L., Pawson, A. J., Flanagan, C. A., Morgan, K., and Maudsley, S. R. (2004) Gonadotropin-releasing hormone receptors. Endocr. Rev. 25, 235–275.

    CAS  PubMed  Google Scholar 

  99. Franco, B., Guioli, S., Pragliola, A., et al. (1991) A gene deleted in Kallmanns syndrome shares homology with neural cell-adhesion and axonal path-finding molecules. Nature. 353, 529–536.

    CAS  PubMed  Google Scholar 

  100. Legouis, R., Hardelin, J. P., Levilliers, J., et al. (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell. 67, 423–435.

    CAS  PubMed  Google Scholar 

  101. Habiby, R. L., Boepple, P., Nachtigall, L., Sluss, P. M., Crowley, W. F., and Jameson, J. L. (1996) Adrenal hypoplasia congenita with hypogonadotropic hypogonadism–evidence that DAX-1 mutations lead to combined hypothalamic and pituitary defects in gonadotropin pro duction. J. Clin. Invest. 98, 1055–1062.

    CAS  PubMed  Google Scholar 

  102. Beranova, M., Oliveira, L. M. B., Bedecarrats, G. Y., et al. (2001) Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 86, 1580–1588.

    CAS  PubMed  Google Scholar 

  103. deRoux, N., Young, J., Misrahi, M., et al. (1997) A family with hypogonadotropic hypogo-nadism and mutations in the gonadotropin-releasing hormone receptor. N. Engl. J. Med. 337, 1597–1602.

    CAS  Google Scholar 

  104. Layman, L. C., Cohen, D. P., Jin, M., et al. (1998) Mutations in gonadotropin-releasing hor mone receptor gene cause hypogonadotropic hypogonadism. Nat. Genet. 18, 14–15.

    CAS  PubMed  Google Scholar 

  105. Lin, L., Conway, G. S., Hill, N. R., Dattani, M. T., Hindmarsh, P. C., and Achermann, J. C. (2006) A homozygous R262Q mutation in the gonadotropin-releasing hormone receptor presenting as constitutional delay of growth and puberty with subsequent borderline oli gospermia. J. Clin. Endocrinol. Metab. 91, 5117–5121.

    CAS  PubMed  Google Scholar 

  106. Hoffmann, S. H., ter Laak, T., Kuhne, R., Reilander, H., and Beckers, T. (2000) Residues within transmembrane helices 2 and 5 of the human gonadotropin-releasing hormone recep tor contribute to agonist and antagonist binding. Mol. Endocrinol. 14, 1099–1115.

    CAS  PubMed  Google Scholar 

  107. Zhou, W., Rodic, V., Kitanovic, S., et al. (1995) A locus of the gonadotropin-releasing-hormone receptor that differentiates agonist and antagonist binding-sites. J. Biol. Chem. 270, 18853–18857.

    CAS  PubMed  Google Scholar 

  108. Chauvin, S., Hibert, M., Berault, A., and Counis, R. (2001) Critical implication of transmem-brane Phe310, possibly in conjunction with Trp279, in the rat gonadotropin-releasing hor mone receptor activation. Biochem. Pharmacol. 62, 329–334.

    CAS  PubMed  Google Scholar 

  109. Hammond, C., and Helenius, A. (1995) Quality-control in the secretory pathway. Curr. Opin. Cell. Biol. 7, 523–529.

    CAS  PubMed  Google Scholar 

  110. Tsigos, C., Arai, K., Hung, W., and Chrousos, G. P. (1993) Hereditary isolated glucocorti coid deficiency is associated with abnormalities of the adrenocorticotropin receptor gene. J. Clin. Invest. 92, 2458–2461.

    CAS  PubMed  Google Scholar 

  111. Tsiotra, P. C., Koukourava, A., Kaltezioti, V., et al. (2006) Compound heterozygosity of a frameshift mutation in the coding region and a single base substitution in the promoter of the ACTH receptor gene in a family with isolated glucocorticoid deficiency. J. Pediatr. Endocrinol. Metab. 19, 1157–1166.

    CAS  PubMed  Google Scholar 

  112. Tsigos, C., Tsiotra, P., Garibaldi, L. R., Stavridis, J. C., Chrousos, G. P., and Raptis, S. A. (2000) Mutations of the ACTH receptor gene in a new family with isolated glucocorticoid deficiency. Mol. Genet. Metab. 71, 646–650.

    CAS  PubMed  Google Scholar 

  113. Morin, D., Ala, Y., and Dumas, R. (1995) Hereditary nephrogenic diabetes insipidus. Arch. Pediatr. 2, 560–567.

    CAS  PubMed  Google Scholar 

  114. Bichet, D. G., Turner, M., and Morin, D. (1998) Vasopressin receptor mutations causing nephrogenic diabetes insipidus. Proc. Assoc. Am. Physicians. 110, 387–394.

    CAS  PubMed  Google Scholar 

  115. Szalai, C., Triga, D., and Czinner, A. (1998) C112R, W323S, N317K mutations in the vaso pressin V2 receptor gene in patients with nephrogenic diabetes insipidus. Mutations in brief no. 165. Online. Hum. Mutat. 12, 137–138.

    CAS  PubMed  Google Scholar 

  116. Ashida, A., Yamamoto, D., Nakakura, H., et al. (2007) A case of nephrogenic diabetes insipidus with a novel missense mutation in the AVPR2 gene. Pediatr. Nephrol. DOI:10.1007/s00467-006-0388-8.

    Google Scholar 

  117. Dong, Y., Sheng, H., Chen, X., Yin, J., and Su, Q. (2006) Deletion of the V2 vasopressin recep tor gene in two Chinese patients with nephrogenic diabetes insipidus. B.M.C. Genet. 7, 53.

    Google Scholar 

  118. Oksche, A., Dickson, J., Schulein, R., et al. (1994) Two novel mutations in the vasopressin V2 receptor gene in patients with congenital nephrogenic diabetes insipidus. Biochem. Biophys. Res. Commun. 205, 552–527.

    CAS  PubMed  Google Scholar 

  119. Pan, Y., Metzenberg, A., Das, S., Jing, B., and Gitschier, J. (1992) Mutations in the V2 vaso-pressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nat. Genet. 2, 103–106.

    CAS  PubMed  Google Scholar 

  120. Szalai, C., Molnar, E., Sallay, P., and Czinner, A. (1998) Molecular biological studies on patients with nephrogenic diabetes insipidus. Orv. Hetil. 139, 883–887.

    CAS  PubMed  Google Scholar 

  121. Rosenthal, W., Seibold, A., Antaramian, A., et al. (1992) Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature. 359, 233–235.

    CAS  PubMed  Google Scholar 

  122. Rosenthal, W., Seibold, A., Antaramian, A., et al. (1994) Mutations in the vasopressin V2 receptor gene in families with nephrogenic diabetes insipidus and functional expression of the Q-2 mutant. Cell. Mol. Biol. (Noisy-Le-Grand). 40, 429–436.

    CAS  Google Scholar 

  123. Rosenthal, W., Antaramian, A., Gilbert, S., and Birnbaumer, M. (1993) Nephrogenic diabe tes insipidus. A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J. Biol. Chem. 268, 13030–13033.

    CAS  PubMed  Google Scholar 

  124. Seibold, A., January, B. G., Friedman, J., Hipkin, R. W., and Clark, R. B. (1998) Desensitization of beta2-adrenergic receptors with mutations of the proposed G protein-cou pled receptor kinase phosphorylation sites. J. Biol. Chem. 273, 7637–7642.

    CAS  PubMed  Google Scholar 

  125. Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002) Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol. 3, 639–650.

    CAS  PubMed  Google Scholar 

  126. Barak, L. S., Oakley, R. H., Laporte, S. A., and Caron, M. G. (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephro genic diabetes insipidus. Proc. Natl. Acad. Sci. U. S. A. 98, 93–98.

    CAS  PubMed  Google Scholar 

  127. Brooks A, O. B. H. R. (2005) Studying the genetics of Hirschsprung's disease: unraveling an oligogenic disorder. Clin. Genet. 67, 6–14.

    PubMed  Google Scholar 

  128. Martucciello, G., Ceccherini, I., Lerone, M., and Jasonni, V. (2000) Pathogenesis of Hirschsprung's disease. J. Pediatr. Surg. 35, 1017–1025.

    CAS  PubMed  Google Scholar 

  129. Kedzierski, R. M., Yanagisawa, M. (2001) Endothelin system: the double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxicol. 41, 851–876.

    CAS  PubMed  Google Scholar 

  130. Puffenberger, E. G., Hosoda, K., Washington, S. S., et al. (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell. 79, 1257–1266.

    CAS  PubMed  Google Scholar 

  131. Attie, T., Till, M., Pelet, A., et al. (1995) Mutation of the endothelin-receptor-B gene in Waardenburg-Hirschsprung-disease. Hum. Mol. Genet. 4, 2407–2409.

    CAS  PubMed  Google Scholar 

  132. Hofstra, R. M. W., Osinga, J., TanSindhunata, G., et al. (1996) A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nat. Genet. 12, 445–447.

    CAS  PubMed  Google Scholar 

  133. Hofstra, R. M. W., Valdenaire, O., Arch, E., et al. (1999) A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am. J. Hum. Genet. 64, 304–308.

    CAS  PubMed  Google Scholar 

  134. Fuchs, S., Amiel, J., Claudel, S., Lyonnet, S., Corvol, P., and Pinet, F. (2001) Functional characterization of three mutations of the endothelin B receptor gene in patients with Hirschsprung's disease: evidence for selective loss of G(i) coupling. Mol. Med. 7, 115–124.

    CAS  PubMed  Google Scholar 

  135. Imamura, F., Arimoto, I., Fujiyoshi, Y., and Doi, T. (2000) W276 mutation in the endothelin receptor subtype B impairs G(q) but not G(i) or G(o) coupling. Biochemistry. 39, 686–692.

    CAS  PubMed  Google Scholar 

  136. Hollopeter, G., Jantzen, H. M., Vincent, D., et al. (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature. 409, 202–207.

    CAS  PubMed  Google Scholar 

  137. Conley, P. B., Jantzen, H. M., Vincent, D., et al. (2000) Molecular identification of the plate let ADP receptor targeted by antithrombotic drugs. Blood. 96, 222A.

    Google Scholar 

  138. Laitinen, T., Polvi, A., Rydman, P., et al. (2004) Characterization of a common susceptibility locus for asthma-related traits. Science. 304, 300–304.

    CAS  PubMed  Google Scholar 

  139. Kormann, M. S. D., Carr, D., Klopp, N., et al. (2005) G-protein-coupled receptor polymor phisms are associated with asthma in a large German population. Am. J. Respir. Crit. Care. Med. 171, 1358–1362.

    PubMed  Google Scholar 

  140. Melen, E., Bruce, S., Doekes, G., et al. (2005) Haplotypes of G protein-coupled receptor 154 are associated with childhood allergy and asthma. Am. J. Respir. Crit. Care. Med. 171, 1089–1095.

    PubMed  Google Scholar 

  141. Kere, J., and Laitinen, T. (2004) Positionally cloned susceptibility genes in allergy and asthma. Curr. Opin. Immunol. 16, 689–694.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Science and Engineering Research Council (NSERC) and the Dairy Farmers of Canada (DFC). The Canadian Institutes of Health Research/Epilepsy Canada provided postdoctoral fellowship support to Dr. Thompson.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thompson, M.D., Percy, M.E., Burnham, W.M., Cole, D.E. (2008). G Protein-Coupled Receptors Disrupted in Human Genetic Disease. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology™, vol 448. Humana Press. https://doi.org/10.1007/978-1-59745-205-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-205-2_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-887-4

  • Online ISBN: 978-1-59745-205-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics