Skip to main content

Proteomic Profiling of Serologic Response to Candida albicans During Host-Commensal and Host-Pathogen Interactions

  • Protocol
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 470))

Abstract

Candida albicans is a commensal inhabitant of the normal human microflora that can become pathogenic and invade almost all body sites and organs in response to both host-mediated and fungus-mediated mechanisms. Serologic responses to C. albicans that underlie its dichotomist relationship with the host (host-commensal and host-pathogen interactions) display a high degree of heterogeneity, resulting in distinct serum anti-Candida antibody signatures (molecular fingerprints of anti-Candida antibodies in serum) that can be used to discriminate commensal colonization from invasive disease. We describe the typical proteomic strategy to globally and integratively profile these host antibody responses and determine serum antibody signatures. This approach is based on the combination of classic immunoproteomics or serologic proteome analysis (two-dimensional electrophoresis followed by quantitative Western blotting and mass spectrometry) with data mining procedures. This global proteomic stratagem is a useful tool not only for obtaining an overview of different anti-Candida antibodies that are being elicited during the host-fungus interaction and, consequently, of the complex C. albicans immunome (the subset of the C. albicans proteome targeted by the immune system), but also for evaluating how this pathogen organism interacts with its host to trigger infection. In contrast with genomics and transcriptomics, this proteomic technology has the potential to detect antigenicity associated with posttranslational modification, subcellular localization, and other functional aspects that can be relevant in the host immune response. Furthermore, this strategy to define molecular fingerprints of serum anti-Candida antibodies may hopefully bring to light potential candidates for diagnosis, prognosis, risk stratification, clinical follow-up, therapeutic monitoring, and/or immunotherapy of candidiasis, especially of its life-threatening systemic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfaller, M. A. and Diekema, D. J. (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163.

    Article  CAS  PubMed  Google Scholar 

  2. Calderone, R. A. and Fonzi, W. A. (2001) Virulence factors of Candida albicans. Trends Microbiol. 9, 327–335.

    Article  CAS  PubMed  Google Scholar 

  3. Hube, B. (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr. Opin. Microbiol. 7, 336–341.

    Article  CAS  PubMed  Google Scholar 

  4. Pitarch, A., Nombela, C., and Gil, C. (2006) Candida albicans biology and pathogenicity: insights from proteomics. Methods Biochem. Anal. 49, 285–330.

    CAS  PubMed  Google Scholar 

  5. Garber, G. (2001) An overview of fungal infections. Drugs 61, 1–12.

    Article  PubMed  Google Scholar 

  6. Rex, J. H., Walsh, T. J., Sobel, J. D., Filler, S. G., Pappas, P. G., Dismukes, W. E., and Edwards, J. E. (2000) Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin. Infect. Dis. 30, 662–678.

    Article  CAS  PubMed  Google Scholar 

  7. Pitarch, A., Abian, J., Carrascal, M., Sanchez, M., Nombela, C., and Gil, C. (2004) Proteomics-based identification of novel Candida albicans antigens for diagnosis of systemic candidiasis in patients with underlying hematological malignancies. Proteomics. 4, 3084–3106.

    Article  CAS  PubMed  Google Scholar 

  8. Pitarch, A., Jimenez, A., Nombela, C., and Gil, C. (2006) Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol. Cell Proteomics. 5, 79–96.

    CAS  PubMed  Google Scholar 

  9. Martinez, J. P., Gil, M. L., Lopez-Ribot, J. L., and Chaffin, W. L. (1998) Serologic response to cell wall mannoproteins and proteins of Candida albicans. Clin. Microbiol. Rev. 11, 121–141.

    CAS  PubMed  Google Scholar 

  10. Ellepola, A. N. and Morrison, C.J. (2005) Laboratory diagnosis of invasive candidiasis. J. Microbiol. 43, 65–84.

    PubMed  Google Scholar 

  11. Krah, A. and Jungblut, P. R. (2004) Immunoproteomics. Methods Mol. Med. 94, 19–32.

    CAS  PubMed  Google Scholar 

  12. Caron, M., Choquet-Kastylevsky, G., and Joubert-Caron, R. (2007) Cancer immunomics using autoantibody signatures for biomarker discovery. Mol. Cell Proteomics. 6, 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  13. Seliger, B. and Kellner, R. (2002) Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Proteomics. 2, 1641–1651.

    Article  CAS  PubMed  Google Scholar 

  14. Chich, J. F., David, O., Villers, F., Schaeffer, B., Lutomski, D., and Huet, S. (2007) Statistics for proteomics: experimental design and 2-DE differential analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 849, 261–272.

    Article  CAS  PubMed  Google Scholar 

  15. Haoudi, A. and Bensmail, H. (2006) Bioinformatics and data mining in proteomics. Expert. Rev. Proteomics. 3, 333–343.

    Article  CAS  PubMed  Google Scholar 

  16. Phan, J. H., Quo, C. F., and Wang, M. D. (2006) Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics. Prog. Brain Res. 158, 83–108.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson, R. A., Curwen, R. S., Braschi, S., Hall, S. L., Coulson, P. S., and Ashton, P. D. (2004) From genomes to vaccines via the proteome. Mem. Inst. Oswaldo Cruz 99, 45–50.

    Article  CAS  PubMed  Google Scholar 

  18. Sette, A., Fleri, W., Peters, B., Sathiamurthy, M., Bui, H. H., and Wilson, S. (2005) A roadmap for the immunomics of category A-C pathogens. Immunity. 22, 155–161.

    Article  CAS  PubMed  Google Scholar 

  19. Pitarch, A., Diez-Orejas, R., Molero, G., Pardo, M., Sanchez, M., Gil, C., and Nombela, C. (2001) Analysis of the serologic response to systemic Candida albicans infection in a murine model. Proteomics. 1, 550–559.

    Article  CAS  PubMed  Google Scholar 

  20. Pardo, M., Ward, M., Pitarch, A., Sanchez, M., Nombela, C., Blackstock, W., and Gil, C. (2000) Cross-species identification of novel Candida albicans immunogenic proteins by combination of two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Electrophoresis 21, 2651–2659.

    Article  CAS  PubMed  Google Scholar 

  21. Pitarch, A., Nombela, C., and Gil, C (2007). Reliability of antibodies to Candida methionine synthase for diagnosis, prognosis and risk stratification in systemic candidiasis: a generic strategy for the prototype development phase of proteomic markers. Proteomics, Clin. Appl., 1, 1221–1242.

    Article  CAS  Google Scholar 

  22. Fernandez-Arenas, E., Molero, G., Nombela, C., Diez-Orejas, R., and Gil, C. (2004) Contribution of the antibodies response induced by a low virulent Candida albicans strain in protection against systemic candidiasis. Proteomics. 4, 1204–1215.

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez-Arenas, E., Molero, G., Nombela, C., Diez-Orejas, R., and Gil, C. (2004) Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine. Proteomics. 4, 3007–3020.

    Article  CAS  PubMed  Google Scholar 

  24. Pitarch, A., Pardo, M., Jimenez, A., Pla, J., Gil, C., Sanchez, M., and Nombela, C. (1999) Two-dimensional gel electrophoresis as analytical tool for identifying Candida albicans immunogenic proteins. Electrophoresis 20, 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  25. Pitarch, A., Nombela, C., and Gil, C. (2006) Contributions of proteomics to diagnosis, treatment, and prevention of candidiasis. Methods Biochem. Anal. 49, 331–361.

    CAS  PubMed  Google Scholar 

  26. Pitarch, A., Molero, G., Monteoliva, L., Thomas, D. P., López-Ribot, J. L., Nombela, C., and Gil, C. (2007) Proteomics in Candida species, in Candida: Comparative and Functional Genomics (d’Enfert, C. and Hube, B., eds), Caister Academic Press, UK, pp. 169–194.

    Google Scholar 

  27. Sahin, U., Tureci, O., Schmitt, H., Cochlovius, B., Johannes, T., Schmits, R., Stenner, F., Luo, G., Schobert, I., and Pfreundschuh, M. (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl. Acad. Sci. U.S.A. 92, 11810–11813.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, S. Y., Obata, Y., Yoshida, M., Stockert, E., Williamson, B., Jungbluth, A. A., Chen, Y. T., Old, L. J., and Scanlan, M. J. (2003) Immunomic analysis of human sarcoma. Proc. Natl. Acad. Sci. U.S.A. 100, 2651–2656.

    Article  CAS  PubMed  Google Scholar 

  29. Rollins, S. M., Peppercorn, A., Hang, L., Hillman, J. D., Calderwood, S. B., Handfield, M., and Ryan, E. T. (2005) In vivo induced antigen technology (IVIAT). Cell Microbiol. 7, 1–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hardouin, J., Lasserre, J. P., Canelle, L., Duchateau, M., Vlieghe, C., Choquet-Kastylevsky, G., Joubert-Caron, R., and Caron, M. (2007) Usefulness of autoantigens depletion to detect autoantibody signatures by multiple affinity protein profiling. J. Sep. Sci. 30, 352–358.

    Article  CAS  PubMed  Google Scholar 

  31. Bradford, T. J., Wang, X., and Chinnaiyan, A. M. (2006) Cancer immunomics: using autoantibody signatures in the early detection of prostate cancer. Urol. Oncol. 24, 237–242.

    CAS  PubMed  Google Scholar 

  32. Hess, J. L., Blazer, L., Romer, T., Faber, L., Buller, R. M., and Boyle, M. D. (2005) Immunoproteomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 815, 65–75.

    Article  CAS  PubMed  Google Scholar 

  33. Chaffin, W. L., Lopez-Ribot, J. L., Casanova, M., Gozalbo, D., and Martinez, J. P. (1998) Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62, 130–180.

    CAS  PubMed  Google Scholar 

  34. Lopez-Ribot, J. L., Casanova, M., Murgui, A., and Martinez, J. P. (2004) Antibody response to Candida albicans cell wall antigens. FEMS Immunol. Med. Microbiol. 41, 187–196.

    Article  CAS  PubMed  Google Scholar 

  35. Pitarch, A., Nombela, C., and Gil, C. (2008) Cell wall fractionation for yeast and fungal proteomics. Methods Mol. Biol. 425, 217–239.

    Article  CAS  PubMed  Google Scholar 

  36. Pitarch, A., Nombela, C., and Gil, C. (2008) Collection of proteins secreted from yeast protoplasts in active cell wall regeneration. Methods Mol. Biol. 425, 241–263.

    Article  CAS  PubMed  Google Scholar 

  37. Pitarch, A., Sanchez, M., Nombela, C., and Gil, C. (2003) Analysis of the Candida albicans proteome. I. Strategies and applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 787, 101–128.

    Article  CAS  PubMed  Google Scholar 

  38. Rupp, S. (2004) Proteomics on its way to study host-pathogen interaction in Candida albicans. Curr. Opin. Microbiol. 7, 330–335.

    Article  CAS  PubMed  Google Scholar 

  39. Thomas, D. P., Pitarch, A., Monteoliva, L., Gil, C., and Lopez-Ribot, J. L. (2006) Proteomics to study Candida albicans biology and pathogenicity. Infect. Disord. Drug Targets. 6, 335–341.

    Article  CAS  PubMed  Google Scholar 

  40. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.

    Article  CAS  PubMed  Google Scholar 

  41. Valdes, I., Pitarch, A., Gil, C., Bermudez, A., Llorente, M., Nombela, C., and Mendez, E. (2000) Novel procedure for the identification of proteins by mass fingerprinting combining two-dimensional electrophoresis with fluorescent SYPRO red staining. J. Mass Spectrom. 35, 672–682.

    Article  CAS  PubMed  Google Scholar 

  42. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  CAS  PubMed  Google Scholar 

  43. Okamura, H., Sigal, C. T., Alland, L., and Resh, M. D. (1995) Rapid high-resolution western blotting. Methods Enzymol. 254, 535–550.

    Article  CAS  PubMed  Google Scholar 

  44. Pitarch, A., Sánchez, M., Nombela, C., and Gil, C. (2003). Analysis of the Candida albicans proteome. II. Protein information technology on the Net (update 2002). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 787, 129–148.

    Article  CAS  PubMed  Google Scholar 

  45. d’Enfert, C., Goyard, S., Rodriguez-Arnaveilhe, S., Frangeul, L., Jones, L., Tekaia, F., Bader, O., Albrecht, A., Castillo, L., Dominguez, A., Ernst, J. F., Fradin, C., Gaillardin, C., Garcia-Sanchez, S., de Groot, P., Hube, B., Klis, F. M., Krishnamurthy, S., Kunze, D., Lopez, M. C., Mavor, A., Martin, N., Moszer, I., Onesime, D., Perez, M. J., Sentandreu, R., Valentin, E., and Brown, A. J. (2005) CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res. 33, D353–D357.

    Article  PubMed  Google Scholar 

  46. Westermeier, R. and Naven, T. (eds.) (2002) Proteomics in Practice: A Laboratory Manual of Proteome Analysis. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  47. Choe, L. H. and Lee, K. H. (2000) A comparison of three commercially available isoelectric focusing units for proteome analysis: the multiphor, the IPGphor and the protean IEF cell. Electrophoresis 21, 993–1000.

    Article  CAS  PubMed  Google Scholar 

  48. Palagi, P. M., Hernandez, P., Walther, D., and Appel, R. D. (2006) Proteome informatics I: Bioinformatics tools for processing experimental data. Proteomics 6, 5435–5444.

    Article  CAS  PubMed  Google Scholar 

  49. Hochstrasser, D. F., Harrington, M. G., Hochstrasser, A. C., Miller, M. J., and Merril, C. R. (1988) Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal. Biochem. 173, 424–435.

    Article  CAS  PubMed  Google Scholar 

  50. Necas,O. (1971) Cell wall synthesis in yeast protoplasts. Bacteriol. Rev. 35, 149–170.

    CAS  PubMed  Google Scholar 

  51. Pitarch, A., Sanchez, M., Nombela, C., and Gil, C. (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol. Cell Proteomics 1, 967–982.

    Article  CAS  PubMed  Google Scholar 

  52. Heukeshoven, J. and Dernick, R. (1985) Simplified method for silver staining of proteins in polyacrylamide and the mechanism of silver staining. Electrophoresis 6, 103–112.

    Article  CAS  Google Scholar 

  53. Zolg, J. W. and Langen, H. (2004) How industry is approaching the search for new diagnostic markers and biomarkers. Mol. Cell Proteomics 3, 345–354.

    Article  CAS  PubMed  Google Scholar 

  54. Pitarch, A., Jime´nez, A., Nombela, C., and Gil, C. (2008) Serological proteome analysis to identify systemic candidiasis patients in the intensive care unit: Analytical, diagnostic and prognostic validation of anti-Candida enolase antibodies on quantitative clinical platforms. Proteomics Clin. Appl. 2, 596–618.

    Article  CAS  PubMed  Google Scholar 

  55. Pitarch, A., Nombela, C., and Gil. (2008) The Candida immunome as a mine for clinical biomarker development for invasive candidiasis: From biomarker discovery to assay validation. In Pathogenic Fungi: Insights in Molecular Biology. (Eds., San-Blas, G. and Calderone, R.). Caister Academic Press, Norfolk, UK, pp. 103–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pitarch, A., Nombela, C., Gil, C. (2009). Proteomic Profiling of Serologic Response to Candida albicans During Host-Commensal and Host-Pathogen Interactions. In: Rupp, S., Sohn, K. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 470. Humana Press. https://doi.org/10.1007/978-1-59745-204-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-204-5_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-886-7

  • Online ISBN: 978-1-59745-204-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics