Skip to main content

The Use of Quantum Dot Luminescent Probes for Western Blot Analysis

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 314 Accesses

Abstract

Western blot analysis (1,2) is one of the most widely used methods for analyzing specific protein targets using colorimetric or chemiluminescent substrates (3). However, the reporting labels that are typically used for protein detection are unsuitable for simultaneous detection of multiple targets. In order to detect different proteins the blot is usually stripped and reprobed, an approach that is time- and labor-intensive, and often leads to loss of immobilized proteins from the blot. Detection of multiple antigens on a single protein blot without stripping off prior antibodies is possible, but requires sequential reactions (4). More recent approaches employ multiple fluorescent probes made from small organic dye molecules ((5) and references therein), but such probes have several limitations, described below. The use of QD luminescent labels has the potential to eliminate most of these problems.

QDs are semiconductor nanoparticles (e.g. CdSe, InP, InAs) with diameters in the range of 2 to 10 nm whose fundamental physical properties are influenced by quantum confinement effects (6). QDs exhibit absorption and emission peaks that progressively shift to longer wavelengths with increasing particle size. For applications as fluorescent markers, the relevant quantum confinement effect is the tuning of the semiconductor band gap and hence the color of the QD emission achieved simply by changing the size of the particle. In this way, the luminescence wavelength of QDs can be tuned from the infrared to the ultraviolet (7). Fig. 1 shows the photoluminescence of CdSe nanocrystals spanning the visible spectrum with particles ranging in diameter from 2 to 6 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Renart, J., Reiser, J., and Stark, G. R. (1979) Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc. Natl. Acad. Sci. USA 76, 3116–3120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kurien, B. T., and Scofield, R. H. (2003) Protein blotting: a review. J. Immunol. Methods 274, 1–15.

    Article  CAS  PubMed  Google Scholar 

  4. Krajewski, S., Zapata, J. M., and Reed, J.C. (1996) Detection of multiple antigens on Western blots. Anal. Biochem. 236, 221–228.

    Article  CAS  PubMed  Google Scholar 

  5. Gingrich, J. C., Davis, D. R., and Nguyen, Q. (2000) Multiplex detection and quan-titation of proteins on Western blots using fluorescent probes. BioTechniques 29, 636–642.

    CAS  PubMed  Google Scholar 

  6. Alivisatos, A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937.

    Article  CAS  Google Scholar 

  7. Alivisatos, P. (2000) Colloidal quantum dots. From scaling laws to biological applications. Pure Appl. Chem. 72, 3–9.

    Article  CAS  Google Scholar 

  8. Chan, W. C. W., and Nie, S. M. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, X. Y., Liu, H. J., Liu, J. Q., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N. F., Peale, F., and Bruchez, M. P. (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Bio-technol. 21, 41–46.

    Article  CAS  Google Scholar 

  10. Chan, W.C.W., Maxwell, D.J., Gao, X.H., Bailey, R.E., Han, M.Y., and Nie, S.M. (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46.

    Article  CAS  PubMed  Google Scholar 

  11. Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and Libchaber, A. (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762.

    Article  CAS  PubMed  Google Scholar 

  12. Alivisatos, P. (2004) The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52.

    Article  CAS  PubMed  Google Scholar 

  13. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Makrides, S. C., Gasbarro, C., and Bello, J. M. (2005) Bioconjugation of quantum dot luminescent probes for western blot analysis. Biotechniques 39, 501–6.

    Article  CAS  PubMed  Google Scholar 

  15. Nilsson, B., Moks, T., Jansson, B., Abrahmsen, L., Elmblad, A., Holmgren, E., Henrichson, C., Jones, T. A., and Uhlén, M. (1987) A synthetic IgG-binding domain based on Staphylococcal protein A. Protein Eng. 1, 107–113.

    Article  CAS  PubMed  Google Scholar 

  16. Löwenadler, B., Jansson, B., Paleus, S., Holmgren, E., Nilsson, B., Moks, T., Palm, G., Josephson, S., Philipson, L., and Uhlén, M. (1987) A gene fusion system for generating antibodies against short peptides. Gene 58, 87–97.

    Article  PubMed  Google Scholar 

  17. Nilsson, J., Nilsson, P., Williams, Y., Pettersson, L., Uhlén, M., and Nygren, P.-Å. (1994) Competitive elution of protein A fusion proteins allows specific recovery under mild conditions. Eur. J. Biochem. 224, 103–108.

    Article  CAS  PubMed  Google Scholar 

  18. Schatz, P. J. (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: A 13 residue consensus peptide specifies biotinylation in Escherichia coli. Bio/Technology 11, 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  19. Cronan, J. E. Jr. (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J. Biol. Chem. 265, 10327–10333.

    CAS  PubMed  Google Scholar 

  20. Nilsson, J., Larsson, M., StÅhl, S., Nygren, P.-Å., and Uhlén, M. (1996) Multiple affinity domains for the detection, purification and immobilization of recombinant proteins. J. Mol. Recognit. 9, 585–594.

    Article  CAS  PubMed  Google Scholar 

  21. Nilsson, J., StÅhl, S., Lundeberg, J., Uhlén, M., and Nygren, P.-Å. (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11, 1–16.

    Article  CAS  PubMed  Google Scholar 

  22. Beckett, D., Kovaleva, E., and Schatz, P.J. (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jansson, B., Uhlén, M., and Nygren, P.-Å. (1998) All individual domains of sta-phylococcal protein A show Fab binding. FEMS Immunol. Med. Microbiol. 20, 69–78.

    Article  CAS  PubMed  Google Scholar 

  24. Graille, M., Stura, E.g., Corper, A.., Sutton, B.., Taussig, M. J., Charbonnier, J. B., and Silverman, G. J. (2000) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc. Natl. Acad. Sci. USA 97, 5399–5404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nossal, N. G. and Heppel, L. A. (1966) The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. Biol. Chem. 241, 3055–306.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Per-Åke Nygren for advice on the ZZ protein. We thank Theresa Harper for technical advice on QDs, and Nancy Kawai for help with figure 4. Funding of this work by the DOE (DE-FG02-04ER83933) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Makrides, S.C., Gasbarro, C., Bello, J.M. (2009). The Use of Quantum Dot Luminescent Probes for Western Blot Analysis. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_79

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-198-7_79

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-474-6

  • Online ISBN: 978-1-59745-198-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics