Skip to main content

Coupling of Antibodies with Biotin

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 376 Accesses

Abstract

The avidin—biotin bond is the strongest known biological interaction between a ligand and a protein (K d = 1.3 × 10−15 M at pH 5) (1). The affinity is so high that the avidin—biotin complex is extremely resistant to any type of denaturing agent (2). Biotin (Fig. 1) is a small, hydrophobic molecule that functions as a coenzyme of carboxylases (3). It is present in all living cells. Avidin is a tetrameric glycoprotein of 66,000–68,000 mol wt, found in egg albumin and in avian tissues. The interaction between avidin and biotin occurs rapidly, and the stability of the complex has prompted its use for in situ attachment of labels in a broad variety of applications, including immunoassays, DNA hybridization (4–6), and localization of antigens in cells and tissues (7). Avidin has an isoelectric point of 10.5. Because of its positively charged residues and its oligosaccharide component, consisting mostly of mannose and glucosamine (8), avidin can interact nonspecifically with negative charges on cell surfaces and nucleic acids, or with membrane sugar receptors. At times, this causes background problems in histochemical and cyto-chemical applications. Streptavidin, a near-neutral, biotin binding protein (9) isolated from the culture medium of Streptomyces avidinii, is a tetrameric nonglycosylated analog of avidin with a mol wt of about 60,000. Like avidin, each molecule of streptavidin binds four molecules of biotin, with a similar dissociation constant. The two proteins have about 33% sequence homology, and tryptophan residues seem to be involved in their biotin binding sites (10, 11). In general, streptavidin gives less background problems than avidin. This protein, however, contains a tripeptide sequence Arg-Tyr-Asp (RYD) that apparently mimics the binding sequence of fibronectin Arg-Gly-Asp (RGD), a universal recognition domain of the extracellular matrix that specifically promotes cell adhesion. Consequently, the streptavidin—cell-surface interaction causes high background in certain applications (12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Green, N. M. (1963) Avidin. 3. The nature of the biotin binding site. Biochem. J. 89, 599–609.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Green, N. M. (1963) Avidin. 4. Stability at extremes of pH and dissociation into subunits by guanidine hydrochloride. Biochem. J. 89, 609–620.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Knappe, J. (1970) Mechanism of biotin action. Annu. Rev. Biochem. 39, 757–776.

    Article  CAS  PubMed  Google Scholar 

  4. Wilchek, M. and Bayer, E. A. (1988) The avidin—biotin complex in bioanalytical applications. Analyt. Biochem. 171, 1–32.

    Article  CAS  PubMed  Google Scholar 

  5. Wilchek, M. and Bayer, E. A. (1990) Avidin—biotin technology, in Methods in Enzymology, vol. 184, Academic, New York, pp. 213–217.

    Google Scholar 

  6. Levi, M., Sparvoli, E., Sgorbati, S., and Chiantante, D. (1990) Biotin—streptavidin immunofluorescent detection of DNA replication in root meristems through Brd Urd incorporation: cytological and microfluorimetric applications. Physiol. Plantarum 79, 231–235.

    Article  CAS  Google Scholar 

  7. Armstrong, R., Friedrich, V. L., Jr., Holmes, K. V., and Dubois-Dalcq, M. (1990) In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination. J. Cell Biol. 111, 1183–1195.

    Article  CAS  PubMed  Google Scholar 

  8. Bruch, R. C. and White, H. B. III (1982) Compositional and structural heterogeneity of avidin glycopeptides. Biochemistry 21, 5334–5341.

    Article  CAS  PubMed  Google Scholar 

  9. Hiller, Y., Gershoni, J. M., Bayer, E. A., and Wilchek, M. (1987) Biotin binding to avidin: oligosaccharide side chain not required for ligand association. Biochem. J. 248, 167–171.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Green, N. M. (1975) Avidin, in Advances in Protein Chemistry, vol. 29 (Anfinsen, C. B., Edsall, J. T., and Richards, F. M., eds.), Academic, New York, pp. 85–133.

    Google Scholar 

  11. Chaiet, L. and Wolf, F. J. (1964) The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Arch. Biochem. Biophys. 106, 1–5.

    Article  CAS  PubMed  Google Scholar 

  12. Alon, R., Bayer, E. A., and Wilcheck, M. (1990) Streptavidin contains an Ryd sequence which mimics the RGD receptor domain of fibronectin. Biochem. Biophys. Res. Commun. 170, 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  13. Wilchek, M. and Bayer, E. A. (1993) Avidin—biotin immobilization systems, in Immobilized Macromolecules: Application Potentials (Sleytr, U. B., ed.), Springer-Verlag, New York, pp 51–60.

    Chapter  Google Scholar 

  14. Gretch, D. R., Suter, M., and Stinski, M. F. (1987) The use of biotinylated monoclonal antibodies and streptavidin affinity chomatography to isolate Herpes virus hydrophobic proteins or glycoproteins. Analyt. Biochem. 163, 270–277.

    Article  CAS  PubMed  Google Scholar 

  15. Hnatowich, D. J., Virzi, F., and Rusckowski, M. (1987) Investigations of avidin and biotin for imaging applications. J. Nucl. Med. 28, 1294–1302.

    CAS  PubMed  Google Scholar 

  16. Haugland, R. P. (1996) Biotin derivatives, in Handbook of Fluorescent Probes and Research Chemicals, 6th ed. (Spence, M., ed.), Molecular Probes, Inc., Eugene, OR, Chapter 4.

    Google Scholar 

  17. LaRochelle, W. J. and Froehner, S. C. (1986) Determination of the tissue distributions and relative concentrations of the postsynaptic 43-kDa protein and the acetylcholine receptor in Torpedo. J. Biol. Chem. 261, 5270–5274.

    CAS  PubMed  Google Scholar 

  18. Briggs, J. and Panfili, P. R. (1991) Quantitation of DNA and protein impurities in biopharmaceuticals. Analyt. Chem. 63, 850–859.

    Article  CAS  Google Scholar 

  19. Wong, S. S. (1991) Reactive groups of proteins and their modifying agents, in Chemistry of Protein Conjugation and Crosslinking, CRC, Boston, MA, pp. 27–29.

    Google Scholar 

  20. Kohanski, R. A. and Lane, M. D. (1985) Receptor affinity chomatography. Ann. NY Acad. Sci. 447, 373–385.

    Article  CAS  PubMed  Google Scholar 

  21. Orr, G. A. (1981) The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J. Biol. Chem. 256, 761–766.

    CAS  PubMed  Google Scholar 

  22. Hoffmann, K., Wood, S. W., Brinton, C. C., Montibeller, J. A., and Finn, F. M. (1980) Iminobiotin affinity columns and their application to retrieval of streptavidin. Proc. Natl. Acad. Sci. 77, 4666–4668.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Haugland, R.P., You, W.W. (2009). Coupling of Antibodies with Biotin. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-198-7_69

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-474-6

  • Online ISBN: 978-1-59745-198-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics