Skip to main content

Microchip Capillary Electrophoresis

Application to Peptide Analysis

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 395 Accesses

Abstract

Peptides are a large class of molecules that differ in size, charge, conformation, hydrophobiCity>, and the ability to form biospecific complexes. Peptides play an important role in many physiological processes, including the regulation of pain, blood pressure, and immune response, and can act as antibiotics, coenzymes/enzyme inhibitors, drugs, growth stimulators, hormones, neurotransmitters, and toxins (1).

Since the identification of leu-enkephalin in the 1970s, the role of neuropeptides in the regulation of the central nervous system and signal transduction has been extensively investigated (1). Identification of specific peptides and their functions may permit the design of pharmacologically active synthetic analogs that could be used for the treatment of neurological diseases such as Parkinson’s and Alzheimer’s. Peptide analysis is also important for proteomics research. Digestion of a protein yields distinct peptide mixtures, which are separated and mapped in order to characterize the parent molecule. In some cases, multidimensional separations are needed to achieve resolution and identification of all peptide components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Strand, F. L. (1999) Neuropeptides: Regulators of Physiological Processes. MIT Press, Cambridge, MA.

    Google Scholar 

  2. Issaq, H. J. (2001) The role of separation science in proteomics research. Electro-phoresis 22, 3629–3683.

    CAS  Google Scholar 

  3. Kasicka, V. (2003) Recent advances in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 24, 4013–4046.

    CAS  PubMed  Google Scholar 

  4. Rodriguez, I. and Li, S. F. Y. (1999) Surface deactivation in protein and peptide analysis by capillary electrophoresis. Anal. Chim. Acta. 383, 1–26.

    CAS  Google Scholar 

  5. Manz, A., Graber, N., and Widmer, H. M. (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B 1, 244–248.

    CAS  Google Scholar 

  6. Soper, S. A., Ford, S. M., Qi, S., McCarley, R. L., Kelly, K., and Murphy, M. C. (2000) Polymeric microelectromechanical systems. Anal. Chem. 72, 643A–651A.

    CAS  Google Scholar 

  7. Lacher, N. A., de Rooij, N. F., Verpoorte, E., and Lunte, S. M. (2003) Comparison of the performance characteristics of poly(dimethylsiloxane) and Pyrex microchip electrophoresis devices for peptide separations. J. Chrom. A 1004, 225–235.

    CAS  Google Scholar 

  8. Chen, H., Yong, Z., Bi-Feng, L., Dai-Wen, P., and Jie-Ke, C. (2002) Influence of soluble polymer polyvinylpyrrolidone on separation of small peptides and amino acids by microchip-based capillary electrophoresis. Anal. Bioanal. Chem. 373, 314–317.

    CAS  PubMed  Google Scholar 

  9. Hu, S., Ren, X., Bachman, M., Sims, C. E., Li, G. P., and Albritton, N. (2002) Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal. Chem. 74, 4177–4123.

    Google Scholar 

  10. Liu, J., Pan, T., Woolley, A. T. and Lee, M. L. (2004) Surface-Modified Poly (methyl methacrylate) Capillary electrophoresis microchips for protein and peptide analysis. Anal. Chem. 76, 6948–6955.

    CAS  PubMed  Google Scholar 

  11. Nagata, H., Tabuchi, M., Hirano, K., and Baba, Y. (2005) Microchip electrophoretic protein separation using electroosmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips. Electrophoresis 26, 2247–2253.

    CAS  PubMed  Google Scholar 

  12. Liu, J. and Lee, M. L. (2006) Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 27, 3533–3546.

    CAS  PubMed  Google Scholar 

  13. Lichtenberg, J., de Rooij, N. F., and Verpoorte, E. (2002) Sample pretreatment on microfabricated devices. Talanta 56, 233–266.

    CAS  PubMed  Google Scholar 

  14. Bergkvist, J., Ekström, S., Wallman, L., Löfgren, M., Marko-Varga, G., Nilsson, J., and Laurell, T. (2002) Improved chip design for integrated solid-phase microextraction in on-line proteomic sample preparation. Proteomics 2, 422–429.

    CAS  PubMed  Google Scholar 

  15. Yu, C., Davey, M. H., Svec, F. and Frechet, J. M. J. (2001) Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal. Chem. 73, 5088–5096.

    CAS  PubMed  Google Scholar 

  16. Le Gac, S., Carlier, J., Camart, J. C., Cren-Olive, C., Rolando, C. (2004) Monoliths for microfluidic devices in proteomics. J. Chromatogr. B 808, 3–14.

    CAS  Google Scholar 

  17. Huang, Y., Shan, W., Liu, B., Liu, Y., Zhang, Y., Zhao, Y., Lu, H., Tang, Y., and Yang, P. (2006) Zeolite nanoparticle modified microchip reactor for efficient protein digestion. Lab Chip. 6, 534–539.

    CAS  PubMed  Google Scholar 

  18. Silvertand, L. H. H., Machtejevas, E., Hendriks, R., Unger, K. K., van Bennekom, W., and de Jong, G. J. (2006) Selective protein removal and desalting using microchip CE. J. Chrom. 839, 68–73.

    CAS  Google Scholar 

  19. Huynh, B. H., Fogarty, B. A., Nandi, and Lunte, S. M. (2006) A microchip elec-trophoresis device with on-line microdialysis sampling and on-chip sample deriva-tization by naphthalene 2, 3-dicarboxaldehyde/2-mercaptoethanol for amino acid and peptide analysis. J. Pharm. Biomed. Anal. 42, 529–534.

    CAS  PubMed  Google Scholar 

  20. Wang, C., Oleschuk, R., Ouchen, F., Li, J., Thibault, P., and Harrison, D. J. (2000) Integration of immobilized trypsin bead beds for protein digestion within a micro-fluidic chip incorporating capillary electrophoresis separations and an electrospray mass spectrometry interface. Rapid Commun. Mass Spectrom. 14, 1377–1383.

    CAS  PubMed  Google Scholar 

  21. Jin, L. J., Ferrance, J., Sanders, J. C., and Landers, J. P. (2003) A microchip-based proteolytic digestion system driven by electroosmotic pumping. Lab Chip. 3, 11–8.

    CAS  PubMed  Google Scholar 

  22. Gao, J., Xu, J. D., Locascio, L. E., and Lee, C. S. (2001) Integrated Microfluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification. Anal. Chem. 73, 2648–2655.

    CAS  PubMed  Google Scholar 

  23. Jiang, Y. and Lee, C. S. (2001) On-line coupling of micro-enzyme reactor with micro-membrane chromatography for protein digestion, peptide separation, and protein identification using electrospray ionization mass spectrometry. J. Chrom. A 924, 315–322.

    CAS  Google Scholar 

  24. Peterson, D. S., Rohr, T., Svec, F., and Frechet, J. M. J. (2002) Enzymatic microreactor-on-a-chip: protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices. Anal. Chem. 74, 4081–4088.

    CAS  PubMed  Google Scholar 

  25. Sakai-Kato, K., Kato, M., and Toyo’oka, T. (2003) Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal. Chem. 75, 388–393.

    CAS  PubMed  Google Scholar 

  26. Kim, Y. D., Park, C. B., and Clark, D. S. (2001) Stable sol-gel microstructured and microfluidic networks for protein patterning. Biotechnol. Bioeng. 73, 331–317.

    CAS  PubMed  Google Scholar 

  27. Gottschlich, N. (2000) Integrated microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides. J. Chrom. B 745, 243–249.

    CAS  Google Scholar 

  28. Liu, Y., Qu, H., Xue, Y., Wu, Z., Yang, and Liu, B. (2007) Enhancement of proteol-ysis through the silica-gel-derived microfluidic reactor. Proteomics 7, 1373–1378.

    CAS  PubMed  Google Scholar 

  29. Yue, G. E., Roper, M. G., Balchunas, C., Pulsipher, A., Coon, J. J., Shabanowitz, J., Hunt, D. F., Landers, J. P., and Ferrance, J. P. (2006) Protein Digestion and Phos-phopeptide Enrichment on a Glass Microchip. Anal. Chem. Acta 564, 116–122.

    CAS  Google Scholar 

  30. Bruin, G. J. (2000) Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis 21, 3981–3951.

    Google Scholar 

  31. Gawron, A. J., Martin, R. S., and Lunte, S. M. (2001) Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. Eur. J. Pharm. Sci. 14, 1–12.

    CAS  PubMed  Google Scholar 

  32. Wang, J., Chen, G., and Pumera, M. (2003) Microchip separation and electrochemical detection of amino acids and peptides following precolumn derivatization with naphthalene-2,3-dicarboxyaldehyde. Electroanalysis 15, 862–865.

    CAS  Google Scholar 

  33. Galloway, M., Stryjewski, W., Henry, A., Ford, S. M., Liopis, S., McCarley, R. L., and Soper, S. A. (2002) Contact conductivity detection in poly(methylmethacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. Anal. Chem. 74, 2407–2415.

    CAS  PubMed  Google Scholar 

  34. Gawron, A. J. and Lunte, S. M. (2000) Detection of neuropeptides using on-capillary copper complexation and capillary electrophoresis with electrochemical detection. Electrophoresis 21, 3205–3211.

    CAS  PubMed  Google Scholar 

  35. Li, J., Wang, C., Kelly, J. F., Harrison, D. J., and Thibault, P. (2000) Rapid and sensitive separation of trace level protein digests using microfabricated devices coupled to a quadrupole—time-of-flight mass spectrometer. Electrophoresis 21, 198–210.

    CAS  PubMed  Google Scholar 

  36. Skoog, D. A., Holler, F. J., and Nieman, T. A.(1998) Capillary electrophoresis and capillary electrochromatograpy, in Principles of Instrumental Analysis (D.A. Skoog, F.J. Holler, and T.A. Nieman, eds.).Harcourt Brace College Publishers, Philadelphia, 778–795.

    Google Scholar 

  37. Weinberger, R. (1993) Practical Capillary Electrophoresis. Academic Press, New York, 312.

    Google Scholar 

  38. Terabe, S. T., Otsuka, K. and Ando, T. (1985) Electrokinetic chromatography with miceller solution and open tubular capillary. Anal. Chem. 57, 834–841.

    CAS  Google Scholar 

  39. Roman, G. T., Carroll, S., McDaniel, K., and Culbertson, C. T. (2006) Micellar electrokinetic chromatography of fluorescently labeled proteins on poly (dimethylsiloxane)-based microchips. J. Separation Sci. 27, 2933–2939.

    CAS  Google Scholar 

  40. Heiger, D. N. (1992) High Performance Capillary Electrophoresis - An Introduction. Hewlett-Packard, Paris, 136.

    Google Scholar 

  41. Wainright, A., Williams, S. J., Ciambrone, G., Xue, Q., Wei, J., and Harris, D. (2002) Sample pre-concentration by isotachophoresis in microfluidic devices. J. Chrom. A 979, 69–80.

    CAS  Google Scholar 

  42. Kurnik, R. T., Boone, T. D., Nguyen, U., Ricco, A. J., and Williams, S. J. (2003) Use of floating electrodes in transient isotachophoresis to increase the sensitivity of detection. Lab Chip. 3, 86–92.

    CAS  PubMed  Google Scholar 

  43. Hjerten, S. and Zhu, M. D. (1985) Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. J. Chromatogr. 346, 265.

    CAS  Google Scholar 

  44. Hjerten, S., Elenbring, K., Kilar, F., Lias, J. L., Chen, A. J. C., Liebert, C. J., Zhu, M.-D. (1987)Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J. Chroma-togr. 403, 47–61.

    CAS  Google Scholar 

  45. Kilar, F. and Hjerten, S. (1989) Separation of the human transferrin isoforms by carrier-free high-performance zone electrophoresis and isoelectric focusing. J. Chromatogr. 480, 351–357.

    CAS  PubMed  Google Scholar 

  46. Kilar, F. and Hjerten, S. (1989) Fast and high resolution analysis of human serum transferrin by high performance isoelectric focusing in capillaries. Electrophoresis 10, 23–29.

    CAS  PubMed  Google Scholar 

  47. Schwartz, H. and Pritchett, T. (1994) Separation of Proteins and Peptides by Capillary Electrophoresis: Application to Analytical Biotechnology. Vol. V. Beckman Instruments, Fullerton, CA.

    Google Scholar 

  48. Landers, J. ed. (1997) Handbook of Capillary Electrophoresis, 2nd ed. CRC Press, New York, 894.

    Google Scholar 

  49. Hofmann, O., Che, D., Cruickshank, K. A., and Muller, U. R. (1999) Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal. Chem. 71, 678–686.

    CAS  PubMed  Google Scholar 

  50. Mao, Q. and Pawliszyn, J. (1999) Demonstration of isoelectric focusing on an etched quartz chip with UV absorption imaging detection. Analyst 124, 637–641.

    CAS  Google Scholar 

  51. Raisi, F., Belgrader, P., Borkholder, D. A., Herr, A. E., Kintz, G. J., Pourhamadi, F., Taylor, M. T., and Northrup, M. A. (2001) Microchip isoelectric focusing using miniature scanning detection system. Electrophoresis 22, 2291–2295.

    CAS  PubMed  Google Scholar 

  52. Sanders, J. C., Huang, Z., and Landers, J. P. (2001) Acousto-optical deflection-based whole channel scanning for microchip isoelectric focusing with laser-induced fluorescence detection. Lab Chip. 1, 167–172.

    CAS  PubMed  Google Scholar 

  53. Guillo, C., Karlinsey, J. M., and Landers, J. P. (2007) On-chip pumping for pressure mobilization of the focused zones following microchip isoelectric focusing. Lab Chip. 7, 112–118.

    CAS  PubMed  Google Scholar 

  54. Walhagen, K., Unger, K. K., and Hearn, M. T. W. (2000) Capillary electroosmotic chromatography of peptides. J. Chromatogr. A 887, 165–185.

    CAS  PubMed  Google Scholar 

  55. Jemere, A. B., Oleschuck, R. D., Ouchen, F., Fajuyigbe, F., and Harrison, D. J. (2002) An integrated SPE system for sub-picomolar detection. Electrophoresis 23, 3537.

    CAS  PubMed  Google Scholar 

  56. He, B., Ji, J., and Regnier, F.E. (1999) Capillary chromatography of peptides in a microfabricated system. J. Chromatogr. A 853, 257–262.

    CAS  PubMed  Google Scholar 

  57. Slentz, B. E., Penner, N. A., Lugowska, E., and Regnier, F. E. (2001) Nanoliter capillary electrochromatography columns based on collocated monolithic supposrt structures molded in poly(dimethylsiloxane). Electrophoresis 22, 3736–3743.

    CAS  PubMed  Google Scholar 

  58. Slentz, B. E., Penner, N. A., and Regnier, F. (2002) Sampling BIAS at channel junctions in gated flow injection on chips. Anal. Chem. 74, 4835–4840.

    CAS  PubMed  Google Scholar 

  59. Svec, F. (2003) Porous monoliths: the newest generation of stationary phases for HPLC and related methods. Recent Dev in LC Column Technol. June.

    Google Scholar 

  60. Throckmorton, D. J., Shepodd, T. J., and Singh, A. K. (2002) Electrochromatog-raphy in microchips: reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoloths. Anal. Chem. 74, 784–789.

    CAS  PubMed  Google Scholar 

  61. Breadmore, M. C. (2003) Towards a microchip-based chromatographic platform. Part 2: sol-gel phases modified with polyelectrolyte multilayers for capillary elec-trochromatography. Electrophoresis 24, 1261–1270.

    CAS  PubMed  Google Scholar 

  62. Guijt, R. M., Baltussen, E., van Dedem, G. W. (2002) Use of bioaffinity interactions in electrokinetically controlled assays on microfabricated devices. Electrophoresis 23, 823–835.

    CAS  PubMed  Google Scholar 

  63. Abad-Villar, E. M., Tanyanyiwa, J., Fernandez-Abedul, M. T., Costa-Garcia, A., and Hauser, P. C. (2004) Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements. Anal. Chem. 76, 1282–1288.

    CAS  PubMed  Google Scholar 

  64. Martynova, L., Gaitan, M., Kramer, G. W., Christensen, R. G., and MacCrehan, W. A. (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 69, 4783–4789.

    CAS  PubMed  Google Scholar 

  65. von Heeren, F., Verpoorte, E., Manz, A., and Thormann, W. (1996) Micellar elec-trokinetic chromatography separations and analyses of biological samples on a cyclic planar microstructure. Anal. Chem. 68, 2044–2053.

    Google Scholar 

  66. Chiem, N. and Harrison, D. J. (1997) Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal. Chem. 69, 373–378.

    CAS  PubMed  Google Scholar 

  67. Chiem, N. H. and Harrison, D. J. (1998) Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination. Clin. Chem. 44, 591–598.

    CAS  PubMed  Google Scholar 

  68. Qiu, C. X. and Harrison, D. J. (2001) Integrated self-calibration via electrokinetic solvent proportioning for microfluidic immunoassays. Electrophoresis 18, 3949–3958.

    Google Scholar 

  69. Roper, M. G., Shackman, J. G., Dahlgren, G. M., and Kennedy, R. T. (2003) Micro-fluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal. Chem. 75, 4711–4717.

    CAS  PubMed  Google Scholar 

  70. Koutny, L. B., Schmalzing, D., Taylor, T. A., and Fuchs, M. (1996) Microchip Electrophoretic Immunoassay for Serum Cortisol. Anal. Chem. 68, 18–22.

    CAS  PubMed  Google Scholar 

  71. Linder, V., Verpoorte, E., de Rooij, N. F., Sigrist, H., and Thormann, W. (2002) Application of surface biopassivated disposable poly(dimethylsiloxane)/glass chips to a heterogeneous competitive human serum immunoglobulin G immunoassay with incorporated internal standard. Electrophoresis 23, 740–749.

    CAS  PubMed  Google Scholar 

  72. Stettler, A. R., Krattiger, P., Wennemers, H., and Schwarz, M. A. (2007) Electrophoretic affinity measurements on microchip. Determination of binding affinities between diketopiperazine receptors and peptide ligands. Electrophoresis 28, 1832–1838.

    CAS  PubMed  Google Scholar 

  73. Starkey, D., Abdelaziez, Y., Ahn, C. H., Tu, J., Anderson, L., Wehmeyer, K. R., Izzo, N. J., Carr, A. N., Peters, K, G,, Bao, J. J., Halsall, H. B., Heineman, W. R. (2003) Determination of endogenous extracellular signal-regulated protein kinase by microchip capillary electrophoresis. Anal. Biochem. 316, 181–191.

    CAS  PubMed  Google Scholar 

  74. Cohen, C. B., Chin-Dixon, E., Jeong, S., and Nikiforov, T. T. (1999) A microchip-based enzyme assay for protein kinase A. Anal. Biochem. 273, 89–97.

    CAS  PubMed  Google Scholar 

  75. Xue, Q., Wainright, A., Gangakhedkar, S., and Gibbons, I. (2001) Multiplexed enzyme assays in capillary electrophoretic single-use microfluidic devices. Elec-trophoresis 18, 4000–4007.

    Google Scholar 

  76. Song, J. M. G., Guy D., and Vo-Dinh, T. (2003) Application of an integrated microchip system with capillary array electrophoresis to optimization of enzymatic reactions. Anal. Chim. Acta 487, 75–82.

    CAS  Google Scholar 

  77. Wang, J., Ibanez, A., Chatrathi, M. P., and Escarpa, A. (2001) Electrochemical enzyme immunoassays on microchip platforms. Anal. Chem. 73, 5323–5327.

    CAS  PubMed  Google Scholar 

  78. Hadd, A.G., Jacobson, S. C., and Ramsey, J. M. (1999) Microfluidic Assays of Acetylcholinesterase Inhibitors. Anal. Chem. 71, 5206–5212.

    CAS  Google Scholar 

  79. Rocklin, R. D., Ramsey, R. S., and Ramsey, J. M. (2000) A microfabricated fluidic device for performing two-dimensional liquid-phase separations. Anal. Chem. 72, 5244–5249.

    CAS  PubMed  Google Scholar 

  80. Yang, X., Zhang, X., Li, A., Zhu, S., and Huang, Y. (2003) Comprehensive two-dimensional separations based on capillary high-performance liquid chromatography and microchip electrophoresis. Electrophoresis 24, 1451–1457.

    CAS  PubMed  Google Scholar 

  81. Gottschlich, N., Jacobson, S. C., Ramsey, R. S., and Ramsey, J. M. (2001) Two-Dimensional Electrochromatography/Capillary Electrophoresis on a Microchip. Anal. Chem. 73, 2669–2674.

    CAS  PubMed  Google Scholar 

  82. Herr, A. E., Molho, J. I., Drouvalakis, K. A., Mikkelsen, J. C., Utz, P. J., Santiago, J. G., and Kenny, T. W. (2003) On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations. Anal. Chem. 75, 1180–1187.

    CAS  PubMed  Google Scholar 

  83. Slentz, B. E., Penner, N. A., and Regnier, F. E. (2003) Protein proteolysis and the multi-dimensional electrochromatographic separation of histidine-containing peptide fragments on a chip. J. Chromatogr. A 984, 97–107.

    CAS  PubMed  Google Scholar 

  84. Lakowicz, J. R. (1983) Principles of Fluorescent Spectroscopy. New York: Springer.

    Google Scholar 

  85. Gavin, P. F. and Ewing, A. G. (1997) Characterization of Electrochemical Array Detection for Continuous Channel Electrophoretic Separations in Micrometer and Submicrometer Channels. Anal. Chem. 69, 3838–3845.

    CAS  Google Scholar 

  86. Martin, R. S., Gawron, A. J., and Lunte, S. M. (2000) Dual-electrode electrochemical detection for Poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal. Chem. 72, 3196–3202.

    CAS  PubMed  Google Scholar 

  87. Schwarz, M. A., Galliker, B., Fluri, K., Kappes, T., and Hauser, P. C. (2001) A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device. Analyst 126, 147–151.

    CAS  PubMed  Google Scholar 

  88. Gawron, A. J., Martin, R. S., and Lunte, S. M. (2001) Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips. Electrophoresis 22, 242–248.

    CAS  PubMed  Google Scholar 

  89. Schwarz, M. A. and Hauser, P. C. (2001) Recent developments in detection methods for microfabricated analytical devices. Lab Chip. 1, 1–6.

    CAS  PubMed  Google Scholar 

  90. Martin, R. S., Ratzlaff, K. L., Huynh, B. H., and Lunte, S. M. (2002) In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. Anal. Chem. 74, 1136–1143.

    CAS  PubMed  Google Scholar 

  91. Wang, J., Pumera, M., Chatrathi, M. P., Escarpa, A., Konrad, R., Griebel, A., Dorner, W., and Lowe, H. (2002) Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis 23, 596–601.

    CAS  PubMed  Google Scholar 

  92. Allison, A. L., Mayer, G. S., and Shoup, R. E. (1984) The o-phthalaldehyde derivatives of amines for high-speed liquid chromatography/electrochemistry. Anal. Chem. 56, 1089–1096.

    CAS  PubMed  Google Scholar 

  93. Woltman, S. J., Chen, J. G., Weber, S. G., and Tolley, J. O. (1995) Determination of the pharmaceutical peptide TP9201 by post-column reaction with copper(II) followed by electrochemical detection. Pharm. Biomed. Anal. 14, 155–164.

    CAS  Google Scholar 

  94. Chen, J.-G., Woltman, S. J., and Weber, S. G. (1996) Electrochemical detection of biomolecules in liquid chromatography and capillary electrophoresis, in Advances in Chromatography (P.R. Brown and E. Grushka, eds).Marcel Dekker, New York, 273–314.

    Google Scholar 

  95. Shadpour, H., Hupert, M. L., Patterson, D., Liu, C., Galloway, M., Stryjewski, W., Goettert, J., and Soper, S. A. (2007) Multichannel Microchip Electrophore-sis Device Fabricated in Polycarbonate with an Integrated Contact Conductivity Sensor Array. Anal. Chem. 79, 870–878.

    CAS  PubMed  Google Scholar 

  96. Guijt, R. M., Baltussen, E., van der Steen, G., Frank, H., Billiet, H., Schalkhammer, T., Laugere, F., Vellekoop, M., Berthold, A., Sarro, L., and van Dedem, G. W. (2001) Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis 22, 2537–2541.

    CAS  PubMed  Google Scholar 

  97. Thorslund, S., Lindberg, P., Andren, E., Nikolajeff, F., and Bergquist, J. (2005) Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip. Electrophoresis 26, 4674–4683.

    CAS  PubMed  Google Scholar 

  98. Razunguzwa, T. and Timperman, A. T. (2006) Interfacing microchip capillary electrophoresis with electrospray ionization mass spectrometry. Methods Mol. Biol. 339, 67–83.

    CAS  PubMed  Google Scholar 

  99. Musyimi, H. K., Guy, J., Narcisse, D. A., Soper, S. A., Murray, K. K. (2005) Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet. Electrophoresis 26, 4703–4710.

    CAS  PubMed  Google Scholar 

  100. Lazar, I. M., Ramsey, R. S., Sundberg, S. and Ramsey, J. M. (1999) Subattomole-Sensitivity Microchip Nanoelectrospray Source with Time-of-Flight Mass Spec-trometry Detection. Anal. Chem. 71, 3627–3631.

    CAS  PubMed  Google Scholar 

  101. Limbach, P. A., and Meng, Z. (2002) Integrating micromachined devices with modern mass spectroscopy. Analyst 127, 693–700.

    CAS  PubMed  Google Scholar 

  102. Pinto, D. M., Ning, Y. and Figeys, D. (2000) An enhanced microfluidic chip coupled to an electrospray Qstar mass spectrometer for protein identification. Electrophoresis 21, 181–90.

    CAS  PubMed  Google Scholar 

  103. Li, J., Kelly, J. F., Chernushevich, I., Harrison, D. J., Thibault, P. (2000) Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectrospray mass spectrometry. Anal. Chem. 72, 599–609.

    CAS  PubMed  Google Scholar 

  104. Broyles, B. S., Jacobson, S. C., and Ramsey, J. M. (2003) Sample filtration, concentration, and separation integrated on microfluidic devices. Anal. Chem. 75, 2761–2767.

    CAS  PubMed  Google Scholar 

  105. Breadmore, M. C., Wolfe, K. A., Arcibal, I. G., Leung, W. K., Dickson, D., Giordano, B. C., Power, M. E., Ferrance, J. P., Feldman, S. H., Norris, P. M., and Landers, J. P. (2003) Microchip-based purification of DNA from biological samples. Anal. Chem. 75, 1880–1886..

    CAS  PubMed  Google Scholar 

  106. Lazar, I. M., Ramsey, R. S., and Ramsey, J. M. (2001) On-chip proteolytic digestion and analysis using “wrong-way-round” electrospray time-of-flight mass spec-trometry. Anal. Chem. 73, 1733–1739.

    CAS  PubMed  Google Scholar 

  107. Wolfe, K. A., Breadmore, M. C., Ferrance. J. P., Power, M. E., Conroy, J. F., Norris, P. M., and Landers, J. P. (2002) Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 23, 727–733.

    CAS  PubMed  Google Scholar 

  108. Tachibana, Y., Otsuka, K., Terabe, S., Arai, A., Suzuki, K., and Nakamura, S. (2004) Effects of the length and modification of the separation channel on microchip electrophoresis-mass spectrometry for analysis of bioactive compounds. J. Chromatogr. A 1025, 287–296.

    CAS  PubMed  Google Scholar 

  109. Arscott, S., Le Gac, S., Druon, C., Tabourier, and Rolando, C. (2004) A micro-nib nanoelectrospray source for mass spectrometry. Sensors Actuators B 98, 140–147.

    CAS  Google Scholar 

  110. Arscott, S., Gac, S. L., and Rolando, C. (1995)A polysilicon nanoelectrospray-mass spectrometry source based on a microfluidic capillary slot. Sensors Actuators B: Chem. 106, 741–749.

    Google Scholar 

  111. Carlier, J., Arscott, S., Thomy, V., Camart, J. C., Cren-Olive, C., and Le Gac, S. (2005) Integrated microfabricated systems including a purification module and an on-chip nano electrospray ionization interface for biological analysis. J. Chroma-togr. A 1071, 213–222.

    CAS  Google Scholar 

  112. Dahlin, A. P., Bergstroem, S. K., Andren, P. E., Markides, K. E. and Bergquist, J. (2005) Poly(dimethylsiloxane)-Based Microchip for Two-Dimensional SolidPhase Extraction-Capillary Electrophoresis with an Integrated Electrospray Emitter Tip. Anal. Chem. 77, 5356–5363.

    CAS  PubMed  Google Scholar 

  113. Lacher, N. A., Garrison, K. G., and Lunte, S. M. (2002) Separation and detection of angiotensin peptides by Cu(II) complexation and capillary electrophoresis with UV and electrochemical detection. Electrophoresis 23, 1577–1584.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fogarty, B.A., Lacher, N.A., Lunte, S.M. (2009). Microchip Capillary Electrophoresis. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-198-7_37

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-474-6

  • Online ISBN: 978-1-59745-198-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics