Skip to main content

Lentivirus-Mediated RNA Interference in Mammalian Neurons

  • Protocol
Book cover RNAi

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 442))

Summary

The ability to manipulate RNAi in cultured mammalian cells has provided scientists with a very powerful tool to influence gene expression. Neurons represent a cell type that initially displayed resistance to transduction by siRNAs or shRNA, when attempting to silence expression of endogenous genes. However, the development of lentiviral systems with that goal has facilitated the exogenous manipulation of RNAi in these postmitotic cells. Lentiviral-mediated RNAi experiments in cultured mammalian neurons can be designed to address a wide variety of biological questions or to test potential therapeutic hairpins before moving to treatment trials in vivo. We provide a practical approach to accomplish siRNA-mediated silencing of the disease-linked protein torsinA in primary neuronal cultures through the generation of lentiviral vectors expressing shRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozelius, L. J., Hewett, J. W., Page, C. E., et al. (1997). The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17, 40–48.

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez-Alegre, P., and Paulson, H. L. (2004). Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J. Neurosci. 24, 2593–2601.

    Article  CAS  PubMed  Google Scholar 

  3. Goodchild, R. E., and Dauer, W. T. (2004). Mislocalization to the nuclear envelope: An effect of the dystonia-causing torsinA mutation. Proc. Natl. Acad. Sci. USA 101, 847–852.

    Article  CAS  PubMed  Google Scholar 

  4. Naismith, T. V., Heuser, J. E., Breakefield, X. O., and Hanson, P. I. (2004). TorsinA in the nuclear envelope. Proc. Natl. Acad. Sci. USA 101, 7612–7617.

    Article  CAS  PubMed  Google Scholar 

  5. Goodchild, R. E., Kim, C. E., and Dauer, W. T. (2005). Loss of the dystonia-associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron 48, 923–932.

    Article  CAS  PubMed  Google Scholar 

  6. Walker, R. H., and Shashidharan, P. (2003). Developments in the molecular biology of DYT1 dystonia. Mov. Disord. 18, 1102–1107.

    Article  PubMed  Google Scholar 

  7. Gonzalez-Alegre, P., Miller, V. M., Davidson, B. L., and Paulson, H. L. (2003). Toward therapy for DYT1 dystonia: Allele-specific silencing of mutant torsinA. Ann. Neurol. 53, 781–787.

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez-Alegre, P., Bode, N., Davidson, B. L., and Paulson, H. L.(2005). Silencing primary dystonia: Lentiviral-mediated RNA interference therapy for DYT1 dystonia. J. Neurosci. 25, 10502–10509.

    Article  CAS  PubMed  Google Scholar 

  9. Meberg, P. J., and Miller, M. W. (2003). Culturing hippocampal and cortical neurons. Meth. Cell Biol. 71, 111–127.

    Article  Google Scholar 

  10. Harper, S. Q., Staber, P. D., Beck, C. R., et al. (2006). Optimization of feline immunodeficiency virus vectors for RNA interference. J. Virol. 80, 9371–9380.

    Article  CAS  PubMed  Google Scholar 

  11. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., et al. (2003).A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.

    Article  CAS  PubMed  Google Scholar 

  12. Davidson, B. L., and Harper, S. Q. (2005). Viral delivery of recombinant short hairpin RNAs. Meth. Enzymol. 392, 145–173.

    Article  CAS  PubMed  Google Scholar 

  13. Johnston, J. C., Gasmi, M., Lim, L. E., et al. (1999). Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73, 4991–5000.

    CAS  PubMed  Google Scholar 

  14. Hewett, J., Ziefer, P., Bergeron, D., et al. (2003). TorsinA in PC12 cells: Localization in the endoplasmic reticulum and response to stress. J. Neurosci. Res. 72, 158–168.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research on RNAi was funded by the Dystonia Medical Research Foundation (P. G.-A.) and NIH/NINDS (S. Q. H. and P. G.-A.). We are grateful to all the members of the Davidson, Gonzalez, and Paulson laboratories and the Gene Transfer Vectors Core at The University of Iowa for all the hard work carried out to develop and optimize the protocols described here.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Harper, S.Q., Gonzalez-Alegre, P. (2008). Lentivirus-Mediated RNA Interference in Mammalian Neurons. In: Barik, S. (eds) RNAi. Methods in Molecular Biology™, vol 442. Humana Press. https://doi.org/10.1007/978-1-59745-191-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-191-8_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-874-4

  • Online ISBN: 978-1-59745-191-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics