Advertisement

Identification of SNPs, or Mutations in Sequence Chromatograms

  • Nicole Draper
Part of the Methods in Molecular Biology™ book series (MIMB, volume 439)

Abstract

With the completion of the human genome sequencing project in 2001, the identification of novel markers is rapidly gaining importance. It is increasingly recognized that SNPs (single nucleotide polymorphisms) are good markers for disease susceptibility. SNPs are DNA sequence variations that occur when a single nucleotide in the genome sequence is altered in at least 1 % of the population. SNPs may have no effect on cell function, but scientists believe that they could predispose people to disease or influence their response to a drug.

This chapter describes the method of using fluorescent based sequencing to detect SNPs and mutations. Sequencing provides information on the type and location of the SNPs with high accuracy. Researchers will need to provide information on the area of the genome they wish to sequence to design primers to PCR amplify the specific region.

Keywords

Sequencing mutations polymorphisms (SNPs) introns electropherogram 

References

  1. 1.
    1. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMedGoogle Scholar
  2. 2.
    2. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61CrossRefPubMedGoogle Scholar
  3. 3.
    3.Tabor HK, Risch NJ, Myers RM (2002) Opinion: Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3:391–397CrossRefPubMedGoogle Scholar
  4. 4.
    4. Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Ann Rev Genomics Hum Genet 2:235–258CrossRefGoogle Scholar
  5. 5.
    5. The International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933CrossRefGoogle Scholar
  6. 6.
    6.Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N et al (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–233CrossRefPubMedGoogle Scholar
  7. 7.
    7. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A (1999) Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22:239–247CrossRefPubMedGoogle Scholar
  8. 8.
    8. Shamsher MK, Chuzhanova NA, Friedman B, Scopes DA, Alhaq A, Millar DS, Cooper DN, Berg, LP (2000) Identification of an intronic regulatory element in the human protein C (PROC) gene. Hum Genet 107:458–465CrossRefPubMedGoogle Scholar
  9. 9.
    9. Drysdale CM, McGraw DW, Stack CB., Stephens JC, Judson, RS, Nandabalan K, Arnold K, Ruano G, Liggett SB. (2000) Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 97:10483–10488CrossRefPubMedGoogle Scholar
  10. 10.
    10. Cooper DN (2002) Introns, exons and evolution. Human Gene Evolution 3:107–138Google Scholar
  11. 11.
    11. Collins FS, Guyer MS, Chakravarti A (1997) Variations on a theme: Cataloguing human DNA sequence variation. Science 278:1580–1581CrossRefPubMedGoogle Scholar
  12. 12.
    12. Lander ES (1996) The new genomics: Global views of biology. Science 274:536–539CrossRefPubMedGoogle Scholar
  13. 13.
    13. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517CrossRefPubMedGoogle Scholar
  14. 14.
    14. Kwok PY, Carlson C, Yager TD, Ankener W, Nickerson DA (1994) Comparative analysis of human DNA variations by fluorescence-based sequencing of PCR products. Genomics 23:138–144CrossRefPubMedGoogle Scholar
  15. 15.
    15. Powell BL, Haddad L, Bennett A, Gharani N, Sovio U, Groves CJ et al (2005) Analysis of multiple data sets reveals no association between the insulin gene variable number tandem repeat element and polycystic ovary syndrome or related traits. J Clin Endocrinol Metab 90:2988–2993CrossRefPubMedGoogle Scholar
  16. 16.
    16. Draper N, Powell BL., Franks S, Conway GS, Stewart PM, McCarthy MI (2006) Variants implicated in cortisone reductase deficiency do not contribute to susceptibility to common forms of polycystic ovary syndrome. Clin Endocrinol (Oxf) 65:64–70CrossRefGoogle Scholar
  17. 17.
    17. Speight G, Turic D, Austin J, Hoogendoorn B, Cardno AG, Jones L et al (2000) Comparative sequencing and association studies of aromatic L-amino acid decarboxylase in schizophrenia and bipolar disorder. Mol Psychiatry 5:327–331CrossRefPubMedGoogle Scholar
  18. 18.
    18.Fakhrai-Rad H, Pourmand N, Ronaghi M (2002) Pyrosequencing: An accurate detection platform for single nucleotide polymorphisms. Hum Mutat 19:479–485CrossRefPubMedGoogle Scholar
  19. 19.
    19. Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29:e88–8CrossRefPubMedGoogle Scholar
  20. 20.
    20.Kuklin A, Munson K, Gjerde D, Haefele R, Taylor P (1998) Detection of single-nucleotide polymorphisms with the WAVE DNA fragment analysis system. Genet Test 1:201–206CrossRefGoogle Scholar
  21. 21.
    21.O'Donovan MC, Oefner PJ, Roberts SC, Austin J, Hoogendoorn B, Guy C, Speight G et al (1998) Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics 52:44–49CrossRefPubMedGoogle Scholar
  22. 22.
    22. Wang L, Luhm R, Lei M (2007) SNP and mutation analysis. Adv Exp Med Biol 593:105–116CrossRefPubMedGoogle Scholar
  23. 23.
    At www.appliedbiosystems.comGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    27. Draper N, Walker EA, Bujalska IJ, Tomlinson JW, Chalder SM, Arlt W, Lavery GG et al (2003) Mutations in 11 β-hydroxy steroid dehydrogenase type 1 and hexose-6-phosphate dehy-drogenase interact to cause cortisone reductase deficiency. Nat Genet 34:434–439CrossRefPubMedGoogle Scholar
  28. 28.
  29. 29.
  30. 30.

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nicole Draper
    • 1
  1. 1.Oxford Gene Technology LtdYarnton, OxfordUK

Personalised recommendations