Advertisement

GeneFAS: GeneFAS: A Tool for the Prediction of Gene function Using Multiple Sources of Data

  • Trupti Joshi
  • Chao Zhang
  • Guan Ning Lin
  • Zhao Song
  • Dong Xu
Part of the Methods in Molecular Biology™ book series (MIMB, volume 439)

Abstract

Characterizing gene function is one of the major challenging tasks in the postgenomic era. To address this challenge, we developed GeneFAS (gene function annotation system), a computer system with a graphical user interface for cellular function prediction by integrating information from protein-protein interactions, protein complexes, microarray gene expression profiles, and annotations of known proteins. GeneFAS can provide biologists a workspace for their organism of interest, to integrate different types of experimental data and annotation information, and facilitate biological discovery and hypothesis generation using all the information. It also provides testing and training capabilities for users to utilize and integrate their data more efficiently. GeneFAS is freely available for download at http://digbio.missouri.edu/genefas.

Keywords

function prediction microarray data protein-protein interaction high-throughput data meta-analysis 

Notes

Acknowledgments

This work is supported by a startup fund provided to Dong Xu at the University of Missouri-Columbia. We thank Yu Chen for helpful discussions and Gyan Prakash Srivastava for technical assistance.

References

  1. 1.
    1. Chen Y, Xu D (2003) Computation analysis of high-throughput protein-protein interaction data. Current Peptide Protein Sci 4:159–181CrossRefGoogle Scholar
  2. 2.
    2. Joshi T, Chen Y, Becker J, Alexandrov N, Xu D (2004) Genome-scale gene function prediction using multiple sources of high-throughput data in yeast Saccharomyces cerevisiae. OMICS: J Integrative Biol 8:322–333CrossRefGoogle Scholar
  3. 3.
    3. Chen Y, Xu D (2004) Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. Nucl. Acids Res 32:6414–6424CrossRefPubMedGoogle Scholar
  4. 4.
    The Gene Ontology Consortium (2000) Nature Genetics 25:25–29Google Scholar
  5. 5.
    5. Letovsky S, Kasif S (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19:1197–1204CrossRefGoogle Scholar
  6. 6.
    6. Troyanskaya O, Dolinski K, Owen A, Altman R, Botstein D (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA 100:8348–8353CrossRefPubMedGoogle Scholar
  7. 7.
    7. Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cognit Sci 9:147–169CrossRefGoogle Scholar
  8. 8.
    8. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:621–680CrossRefGoogle Scholar
  9. 9.
    9. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Trupti Joshi
    • 1
  • Chao Zhang
    • 1
  • Guan Ning Lin
    • 1
  • Zhao Song
    • 1
  • Dong Xu
    • 1
  1. 1.Digital Biology Laboratory, Computer Science Department and Christopher S. Bond Life Sciences CenterUniversity of Missouri ColumbiaMOColumbia

Personalised recommendations