Scanning for DNA Variants by Denaturant Capillary Electrophoresis

  • Per O. Ekstrøm
Part of the Methods in Molecular Biology™ book series (MIMB, volume 439)


Analysis and detection of DNA variation is important in any field of biology. Hence, numerous methods have been developed to analyze DNA. A simple yet effective way of analyzing DNA is by denaturant capillary electrophoresis (DCE). The method is in theory applicable to 95% of the human genome. The method involves three steps; fragment design, PCR amplification and allele separation. The allele separation can in principle be performed with any DNA capillary sequencing instrument.


DGGE (denaturant gradient gel electrophoresis) CDCE (constant denaturant capillary electrophoresis) CTCE (cycling temperature capillary electrophoresis) PCR (polymerase chain reaction) dsDNA — double strand DNA ssDNA — single strand DNA 


  1. 1.
    1. Watson J, Crick F (1953) Molecular structure of nucleic acids—a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefPubMedGoogle Scholar
  2. 2.
    2. Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana H (1971) Studies on polynucleotides. 96. Repair replication of short synthetic DNAs as catalyzed by DNA polymerases. J Mol Biol 56:341CrossRefPubMedGoogle Scholar
  3. 3.
    3. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463– 5467.CrossRefPubMedGoogle Scholar
  4. 4.
    4. Fischer S, Lumelsky N, Lerman L (1983) Separation of DNA fragments differing by single base substitution—application to beta-degrees-thalassemia identification. DNA—J Molec Cell Bio, 2:171Google Scholar
  5. 5.
    5. Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proc Natl Acad Sci USA 80:1579—1583CrossRefPubMedGoogle Scholar
  6. 6.
    6. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350—1354CrossRefPubMedGoogle Scholar
  7. 7.
    7. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51, Part 1:263–273PubMedGoogle Scholar
  8. 8.
    8. Kwok S, Mack DH, Mullis KB, Poiesz B, Ehrlich G., Blair D, Friedman-Kien A, Sninsky JJ (1987) Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J Virol, 61:1690–1694PubMedGoogle Scholar
  9. 9.
    9. Bjørheim J, Gaudernack, G, Ekstrøm PO (2002) Melting gel techniques in single nucleotide polymorphism and mutation detection: From theory to automation. J Separation Science, 25:637–647CrossRefGoogle Scholar
  10. 10.
    10. Bjørheim J, Ekstrøm PO (2005) Review of denaturant capillary electrophoresis in DNA variation analysis. Electrophoresis 26:2520–2530CrossRefPubMedGoogle Scholar
  11. 11.
    11. Poland D (1974) Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations. Biopolymers 13:1859–1871CrossRefPubMedGoogle Scholar
  12. 12.
    12. Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145CrossRefPubMedGoogle Scholar
  13. 13.
    13. Myers RM, Fischer SG, Maniatis T, Lerman LS (1985) Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3111–3129CrossRefPubMedGoogle Scholar
  14. 14.
    14. Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86:232–236CrossRefPubMedGoogle Scholar
  15. 15.
    15. Khrapko K, Hanekamp, JS, Thilly WG, Belenkii A, Foret F, Karger BL (1994) Constant denaturant capillary electrophoresis (CDCE): A high resolution approach to mutational analysis. Nucleic Acids Res 22:364–369CrossRefPubMedGoogle Scholar
  16. 16.
    16. Kumar R, Hanekamp JS, Louhelainen J, Burvall K, Onfelt A, Hemminki K, Thilly WG (1995) Separation of transforming amino acid-substituting mutations in codons 12, 13 and 61 the N-ras gene by constant denaturant capillary electrophoresis (CDCE). Carcinogenesis 16:2667–2673CrossRefPubMedGoogle Scholar
  17. 17.
    17. Bjørheim J, Lystad S, Lindblom A, Kressner U, Westring S, Wahlberg S, Lindmark G, Gaudernack G, Ekstrøm PO, Roe J et al. (1998) Mutation analyses of KRAS exon 1 comparing three different techniques: Temporal temperature gradient electrophoresis, constant denaturant capillary electrophoresis and allele specific polymerase chain reaction. Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis 403:103–112CrossRefPubMedGoogle Scholar
  18. 18.
    18. Ekstrøm PO, Børresen-Dayle AL, Qvist H, Giercksky KE, Thilly WG (1999) Detection of low-frequency mutations in exon 8 of the TP53 gene by constant denaturant capillary electrophoresis (CDCE). Biotechniques 27‐12Google Scholar
  19. 19.
    19. Ekstrøm PO, Wasserkort R, Minarik M, Foret F, Thilly WG (2000) Two-point fluorescence detection and automated fraction collection applied to constant denaturant capillary electrophoresis. Biotechniques 29:582PubMedGoogle Scholar
  20. 20.
    20. Li-Sucholeiki XC, Khrapko K, Andre PC, Marcelino LA, Karger BL, Thilly WG (1999) Applications of constant denaturant capillary electrophoresis/high-fidelity polymerase chain reaction to human genetic analysis. Electrophoresis 20:1224–1232CrossRefPubMedGoogle Scholar
  21. 21.
    21. Li-Sucholeik, XC, Thilly WG (2000) A sensitive scanning technology for low frequency nuclear point mutations in human genomic DNA. Nucleic Acids Res 28:e44CrossRefGoogle Scholar
  22. 22.
    22. Bjørheim J, Ekstrøm PO, Fossberg E, Børresen-Dale AL, Gaudernack G (2001) Automated constant denaturant capillary electrophoresis applied for detection of KRAS exon 1 mutations. Biotechniques 30:972–975PubMedGoogle Scholar
  23. 23.
    23. Minarik M, Bjørheim, J, Ekstrøm PO, Dains KM (2001) High-throughput mutation detection and screening using MegaBACE (TM) capillary array instrument for genetic analysis. Amer J Human Genetics 69:469–469Google Scholar
  24. 24.
    24. Bjørheim J, Gaudernack G, Ekstrøm PO (2001) Mutation analysis of TP53 exons 5–8 by automated constant denaturant capillary electrophoresis. Tumor Biology 22:323–327CrossRefPubMedGoogle Scholar
  25. 25.
    25. Kristense, AT, Bjorheim J, Minarik M, Giercksky KE, Ekstrom PO (2002) Detection of mutations in exon 8 of TP53 by temperature gradient 96-capillary array electrophoresis. Biotechniques 33:650–653Google Scholar
  26. 26.
    26. Bjørheim J, Minarik M, Gaudernack G, Ekstrøm PO (2002) Mutation detection in KRAS exon 1 by constant denaturant capillary electrophoresis in 96 parallel capillaries. Analytical Biochemistry 304:200–205CrossRefPubMedGoogle Scholar
  27. 27.
    27. Ekstrøm PO, Bjørheim J, Gaudernack G, Giercksky KE (2002) Population screening of single-nucleotide polymorphisms exemplified by analysis of 8000 alleles. J Biomolecular Screening 7:501–506CrossRefGoogle Scholar
  28. 28.
    28. Bjørheim J, Abrahamsen TW, Kristensen AT, Gaudernack G, Ekstrøm PO (2003) Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary elecphoresis. Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis 526:75–83CrossRefPubMedGoogle Scholar
  29. 29.
    29. Minarik M, Minarikova L, Bjorheim J, Ekstrom PO (2003) Cycling gradient capillary electrophoresis: A low-cost tool for high-throughput analysis of genetic variations. Electrophoresis 24:1716–1722CrossRefPubMedGoogle Scholar
  30. 30.
    30. Kristensen AT, Bjorheim J, Wiig J, Giercksky KE, Ekstrom PO (2004) DNA variants in the ATM gene are not associated with sporadic rectal cancer in a Norwegian population-based study. Int J Colorectal Dise, 19:49–54CrossRefGoogle Scholar
  31. 31.
    31. Hinselwood DC, Abrahamsen TW, Ekstrøm PO (2005) BRAF mutation detection and identification by cycling temperature capillary electrophoresis. Electrophoresis 26:2553–2561CrossRefPubMedGoogle Scholar
  32. 32.
    32. Hinselwood DC, Warren DJ, Ekstrøm PO (2005) High-throughput gender determination using automated denaturant gel capillary electrophoresis. Electrophoresis 26:2562–2566CrossRefPubMedGoogle Scholar
  33. 33.
    33. Lorentzen AR, Celius EG, Ekstrøm PO, Wiencke K, Lie BA, Myhr KM, Ling V, Thorsby E, Vartdal F, Spurkland A et al (2005) Lack of association with the CD28/CTLA4/ICOS gene region among Norwegian multiple sclerosis patients. J Neuroimmunol, 166:197–201CrossRefPubMedGoogle Scholar
  34. 34.
    34. Lind H, Zienolddiny S., Ekstrøm PO, Skaug V, Haugen A (2006) Association of a functional polymorphism in the promoter of the MDM2 gene with risk of nonsmall cell lung cancer. Int J Cancer 119:718–721CrossRefPubMedGoogle Scholar
  35. 35.
    35. Harbo HF, Ekstrøm PO, Lorentzen AR, Sundvold-Gjerstad V, Celius EG, Sawcer S, Spurkland A (2006) Coding region polymorphisms in T cell signal transduction genes. Prevalence and association to development of multiple sclerosis. J Neuroimmunol 177:40–45CrossRefPubMedGoogle Scholar
  36. 36.
    36. Bjørheim J, Minarik M, Gaudernack G, Ekstrøm PO (2003) Evaluation of denaturing conditions in analysis of DNA variants applied to multi-capillary electrophoresis instruments. J Separation Science, 26:1163–1168CrossRefGoogle Scholar
  37. 37.
    37. Bracho MA, Moya A, Barrio E (1998) Contribution of Taq polymerase-induced errors to the estimation of RNA virus diversity. J Gen Virol 79, Part 12:2921–2928PubMedGoogle Scholar
  38. 38.
    38. Li-Sucholeik, XC, Tomita-Mitchell A, Arnold K, Glassner BJ, Thompson T, Murthy JV, Berk L, Lange C, Leong-Morgenthaler, PM, MacDougall D et al (2005) Detection and frequency estimation of rare variants in pools of genomic DNA from large populations using mutational spectrometry. Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis 570:267–280CrossRefGoogle Scholar
  39. 39.
    39. Li Q, Deka C, Glassner B, Arnold K, Li-Sucholeiki X, Tomita-Mitchell A, Thilly W, Karger B (2005) Design of an automated multicapillary instrument with fraction collection for DNA mutation discovery by constant denaturant capillary electrophoresis (CDCE). J Separation Science 28:1375–1389CrossRefGoogle Scholar
  40. 40.
    40. Bjørheim J, Gaudernack G, Giercksky KE, Ekstrøm PO (2003) Direct identification of all oncogenic mutants in KRAS exon 1 by cycling temperature capillary electrophoresis. Electrophoresis 24:63–69CrossRefPubMedGoogle Scholar
  41. 41.
    41. Fodde R, Losekoot M (1994) Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum Mutat 3:83–94CrossRefPubMedGoogle Scholar
  42. 42.
    42. Ekstrøm PO, Bjørheim J (2006) Evaluation of sieving matrices used to separate alleles by cycling temperature capillary electrophoresis. Electrophoresis 27:1878–1885CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Per O. Ekstrøm
    • 1
  1. 1.The Norwegian Radium HospitalOsloNorway

Personalised recommendations