Advertisement

Baculovirus Expression Vector System: An Emerging Host for High-Throughput Eukaryotic Protein Expression

  • Binesh Shrestha
  • Carol Smee
  • Opher Gileadi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 439)

Abstract

The increasing demand for production and characterization of diverse groups of recombinant proteins necessitates the analysis of several constructs and fusion tags in a variety of expression systems. The challenge is to screen multiple clones quickly for the desired properties. When using a eukaryotic system, such as baculovirus-mediated expression in insect cells, the total time required and the volume of culture needed to obtain reasonable results are limiting factors. This chapter focuses on addressing these issues by describing rapid small-scale expression as a mode of screening. The method allows the rapid identification of the best clone before scaling-up and the production of heter-ologous protein.

Keywords

high-throughput (HT) baculovirus insect cell functional titration plaque assay 

References

  1. 1.
    1. Harrap KA (1972) The structure of nuclear polyhedrosis viruses. I. The inclusion body. Virology 50:114–123CrossRefPubMedGoogle Scholar
  2. 2.
    2. Fraser M (1986) Ultrastructural observations of virion maturation in Autographa californica nuclear polyhderosis virus infected Spodoptera frugiperda cell cultures. J Ultrastruct Mol Struct Res 95:189–195CrossRefGoogle Scholar
  3. 3.
    3. Summers MD, Anderson DL (1972) Characterization of deoxyribonucleic acid isolated from the granulosis viruses of the cabbage looper, Trichoplusia ni and the fall armyworm, Spodoptera frugiperda. Virology 50:459–471CrossRefPubMedGoogle Scholar
  4. 4.
    4. Vialard JE, Arif BM, Richardson CD (1995) Introduction to the molecular biology of baculo-viruses. Methods Mol Biol 39:1–24PubMedGoogle Scholar
  5. 5.
    5. Blissard GW, Rohrmann GF (1990) Baculovirus diversity and molecular biology. Ann Rev. Entomol 35:127–155CrossRefGoogle Scholar
  6. 6.
    6. O'Reilly D, Miller L, Luckow V (1992) Baculovirus expression vectors: A laboratory manual. W. H. Freeman and Company, San FranciscoGoogle Scholar
  7. 7.
    7. Ooi BG, Miller LK (1988) Regulation of host RNA levels during baculovirus infection. Virology 166:515–523CrossRefPubMedGoogle Scholar
  8. 8.
    8. Knudson D, Harrap K (1976) Replication of a nuclear polyhedrosis virus in a continuous cell culture of Spodoptera frugiperda: Microscopy study of the sequence of events of the virus infection. J. Virol 17:254–268Google Scholar
  9. 9.
    9. Lee HH, Miller LK (1979) Isolation, complementation, and initial characterization of temperature-sensitive mutants of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 31:240–252PubMedGoogle Scholar
  10. 10.
    10. Carstens E, Tjia S, Doerfler W (1979) Infection of Spodoptera frugiperda cells with Autographa californica nuclear polyhedrosis virus I. Synthesis of intracellular proteins after virus infection. Virology 99:386–398CrossRefPubMedGoogle Scholar
  11. 11.
    11. Dobos P, Cochran M (1980) Protein synthesis in cells infected by Autographa californica nuclear polyhedrosis virus (Ac-NPV): The effect of cytosine arabinoside. Virology 103:446–464CrossRefPubMedGoogle Scholar
  12. 12.
    12. Miller L, Trimarchi R, Browne D, Pennock G (1983) A temperature-sensitive mutant of the baculovirus Autographa californica Nuclear polyhedrosis virus defective in an early function required for further gene expression. Virology 126:376–380CrossRefPubMedGoogle Scholar
  13. 13.
    13. Smith GE, Fraser MJ, Summers MD (1983) Molecular engineering of the Autographa californica nuclear polyhedrosis virus genome: Deletion mutations within the polyhedrin gene. J Virol 46:584–593PubMedGoogle Scholar
  14. 14.
    14. Ooi BG, Rankin C, Miller LK (1989) Downstream sequences augment transcription from the essential initiation site of a baculovirus polyhedrin gene. J Mol Biol 210:721–736CrossRefPubMedGoogle Scholar
  15. 15.
    15. Qin JC, Liu AF, Weaver RF (1989) Studies on the control region of the p10 gene of the Autographa californica nuclear polyhedrosis virus. J Gen Virol 70, Part 5:1273–1279CrossRefPubMedGoogle Scholar
  16. 16.
    16. Weyer U, Possee RD (1989) Analysis of the promoter of the Autographa californica nuclear polyhedrosis virus p10 gene. J Gen Virol 70, Part 1:203–208CrossRefPubMedGoogle Scholar
  17. 17.
    17. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575CrossRefPubMedGoogle Scholar
  18. 18.
    18. Hunt I (2005) From gene to protein: A review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 40:1–22CrossRefPubMedGoogle Scholar
  19. 19.
    19. Luckow VA, Lee SC, Barry GF, Olins P O (1993) Efficient generation of infectious recom-binant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579PubMedGoogle Scholar
  20. 20.
    20. McCall EJ, Danielsson A, Hardern IM, Dartsch C, Hicks R, Wahlberg JM, Abbott WM (2005) Improvements to the throughput of recombinant protein expression in the baculovirus/insect cell system. Protein Expr Purif 42:29–36CrossRefPubMedGoogle Scholar
  21. 21.
    21. Gao M, Brufatto N, Chen T, Murley LL, Thalakada R, Domagala M, Beattie B, Mamelak D, Athanasopoulos V, Johnson D, McFadden G, Burks C, Frappier L (2005) Expression profiling of herpesvirus and vaccinia virus proteins using a high-throughput baculovirus screening system. J Proteome Res 4:2225–2235CrossRefPubMedGoogle Scholar
  22. 22.
    22. Philipps B, Rotmann D, Wicki M, Mayr LM, Forstner M (2005) Time reduction and process optimization of the baculovirus expression system for more efficient recombinant protein production in insect cells. Protein Expr Purif 42:211–218CrossRefPubMedGoogle Scholar
  23. 23.
    23. Philipps B, Forstner M, Mayr LM (2005) A baculovirus expression vector system for simultaneous protein expression in insect and mammalian cells. Biotechnol Prog 21:708–711CrossRefPubMedGoogle Scholar
  24. 24.
    Invitrogen (2002) Growth and maintenance of insect cell lines. Invitrogen Life Technologies, version K, Paisley, UK.Google Scholar
  25. 25.
    25. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074CrossRefPubMedGoogle Scholar
  26. 26.
    26. Stols L, Gu M, Dieckman L, Raffen R, Collart FR, Donnelly MI (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25:8–15CrossRefPubMedGoogle Scholar
  27. 27.
    27. Je H, Hee Chang J, Young Choi J, Yul Roh J, Rae J, O'Reilly D, Kwon Kang S (2001) A defective viral genome maintained in Escherichia coli for the generation of baculovirus expression vectors. Biotechnology Letters 23:575–582CrossRefGoogle Scholar
  28. 28.
    28. Hink W, Vail P (1973) A plaque assay for titration of alfalfa looper nuclear polyhedrosis virus in a cabbage looper (TN-368) cell line. J Invertebrate Pathology 22:168–174CrossRefGoogle Scholar
  29. 29.
    29. Lee HH, Miller LK (1978) Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. J Virol 27:754–767PubMedGoogle Scholar
  30. 30.
    30. Davis TR, Trotter KM, Granados RR, Wood HA (1992) Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Biotechnology (NY) 10:1148–1150CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Binesh Shrestha
    • 1
  • Carol Smee
    • 1
  • Opher Gileadi
    • 1
  1. 1.Structural Genomics Consortium, Botnar Research CentreUniversity of OxfordOxfordUK

Personalised recommendations