Transcriptional Profiling of Small Samples in the Central Nervous System

  • Stephen D. Ginsberg
Part of the Methods in Molecular Biology™ book series (MIMB, volume 439)


RNA amplification is a series of molecular manipulations designed to amplify genetic signals from small quantities of starting materials (including single cells and homogeneous populations of individual cell types) for microarray analysis and other downstream genetic methodologies. A novel methodology named terminal continuation (TC) RNA amplification has been developed in this laboratory to amplify RNA from minute amounts of starting material. Briefly, an RNA synthesis promoter is attached to the 3′ and/or 5′ region of cDNA utilizing the TC mechanism. The orientation of amplified RNAs is “antisense” or a novel “sense” orientation. TC RNA amplification is utilized for many downstream applications, including gene expression profiling, microarray analysis, and cDNA library/subtraction library construction. Input sources of RNA can originate from a myriad of in vivo and in vitro tissue sources. Moreover, a variety of fixations can be employed, and tissues can be processed for histochemistry or immunocytochemistry prior to microdissection for TC RNA amplification, allowing for tremendous cell type and tissue specificity of downstream genetic applications.


expression profiling functional genomics IVT (in vitro transcription) microarray postmortem human brain RNA amplification 



I thank Shaoli Che, MD, PhD; Melissa Alldred, PhD; Irina Elarova; Shaona Fang; and Krisztina M. Kovacs for expert technical assistance Support for this project comes from the NINDS (NS43939, NS48447) and NIA (AG10668, AG14449, AG17617, AG09466) and Alzheimer's Association.


  1. 1.
    1. Ginsberg SD, Mimics K (2006) Functional genomic methodologies. Prog Brain Res 158:15–40PubMedCrossRefGoogle Scholar
  2. 2.
    2. Kabbarah O et al (2003) Expression profiling of mouse endometrial cancers microdissected from ethanol-fixed, paraffin-embedded tissues. Am J Pathol 162:755–762PubMedCrossRefGoogle Scholar
  3. 3.
    3. Su, JM et al (2004) Comparison of ethanol versus formalin fixation on preservation of histology and RNA in laser capture microdissected brain tissues. Brain Pathol 14:175–182PubMedCrossRefGoogle Scholar
  4. 4.
    4. Tanji N et al (2001) Effect of tissue processing on the ability to recover nucleic acid from specific renal tissue compartments by laser capture microdissection. Exp Nephrol 9: 229–234PubMedCrossRefGoogle Scholar
  5. 5.
    5. Fend F et al (1999) Immuno-LCM: Laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154:61–66PubMedCrossRefGoogle Scholar
  6. 6.
    6. Kinnecom K, Pachter JS (2005) Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection. Brain Res Protoc 16:1–9CrossRefGoogle Scholar
  7. 7.
    7. Farrell RE Jr (1998) RNA methodologies, 2nd edn. Academic Press, San DiegoGoogle Scholar
  8. 8.
    8. Blumberg DD (1987) Creating a ribonuclease-free environment. Methods Enzymol 152:20–24PubMedCrossRefGoogle Scholar
  9. 9.
    9. Goldsworthy SM et al (1999) Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue. Mol Carcinog 25:86–91PubMedCrossRefGoogle Scholar
  10. 10.
    10. Ginsberg SD, Che S (2002) RNA amplification in brain tissues. Neurochem Res 27:981–992PubMedCrossRefGoogle Scholar
  11. 11.
    11. Mai JK, Schmidt-Kastner R, Tefett H-B (1984) Use of acridine orange for histologic analysis of the central nervous system. J Histochem Cytochem 32:97–104PubMedGoogle Scholar
  12. 12.
    12. Vincent VA et al (2002) Analysis of neuronal gene expression with laser capture microdissection. J Neurosci Res 69:578–586PubMedCrossRefGoogle Scholar
  13. 13.
    13. Ginsberg SD et al (1997) Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Ann Neurol 41:200–209PubMedCrossRefGoogle Scholar
  14. 14.
    14. Mufson EJ, Counts SE, Ginsberg SD (2002) Single cell gene expression profiles of nucleus basalis cholinergic neurons in Alzheimer's disease. Neurochem Res 27:1035–1048PubMedCrossRefGoogle Scholar
  15. 15.
    15. Ginsberg SD et al (1998) RNA sequestration to pathological lesions of neurodegenerative disorders. Acta Neuropathol 96:487–494PubMedCrossRefGoogle Scholar
  16. 16.
    16. Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra com-pacta of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-treated mice using terminal deoxynu-cleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048PubMedCrossRefGoogle Scholar
  17. 17.
    17. Sarnat HB et al (1987) Gliosis and glioma distinguished by acridine orange. Can J Neurol Sci 14:31–35PubMedGoogle Scholar
  18. 18.
    18. Che S, Ginsberg SD (2004) Amplification of transcripts using terminal continuation. Lab Invest 84:131–137PubMedCrossRefGoogle Scholar
  19. 19.
    19. Che S, Ginsberg SD (2006) RNA amplification methodologies. In: McNamara PA (ed.)Trends in RNA Research. Nova Science Publishing, Hauppauge. NY, pp. 277–301Google Scholar
  20. 20.
    20. Ginsberg SD, Che S (2004) Combined histochemical staining, RNA amplification, regional, and single cell analysis within the hippocampus. Lab Invest. 84:952–962PubMedCrossRefGoogle Scholar
  21. 21.
    21. Shaulsky G, Loomis WF (2002) Gene expression patterns in Dictyostelium using microar-rays. Protist 153:93–98PubMedCrossRefGoogle Scholar
  22. 22.
    22. Alter O, Brown PO, Botstein D (2003) Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci USA 100:3351–3356PubMedCrossRefGoogle Scholar
  23. 23.
    23. Kacharmina JE, Crino PB, Eberwine J (1999) Preparation of cDNA from single cells and subcellular regions. Methods Enzymol 303:3–18PubMedCrossRefGoogle Scholar
  24. 24.
    24. Phillips J, Eberwine JH (1996) Antisense RNA amplification: A linear amplification method for analyzing the mRNA population from single living cells. Methods Enzymol Suppl 10:283–288CrossRefGoogle Scholar
  25. 25.
    25. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  26. 26.
    26. Ginsberg SD (2005) RNA amplification strategies for small sample populations. Methods 37:229–237PubMedCrossRefGoogle Scholar
  27. 27.
    27. Ginsberg SD et al (2006) Cell and tissue microdissection in combination with genomic and proteomic applications. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract tracing 3: Molecules, neurons, and systems. Springer, New York, pp. 109–141CrossRefGoogle Scholar
  28. 28.
    28. Ginsberg SD et al (2006) Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. J Neurochem 96:1401–1408PubMedCrossRefGoogle Scholar
  29. 29.
    29. Ginsberg SD et al (2006) Down regulation of trk but not p75 gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. J Neurochem 97:475–187PubMedCrossRefGoogle Scholar
  30. 30.
    30. Ginsberg SD et al (2006) Single cell gene expression profiling in Alzheimer's disease. NeuroRx 3:302–318.PubMedCrossRefGoogle Scholar
  31. 31.
    31. Counts SE et al (2006) Galanin fiber hypertrophy within the cholinergic nucleus basalis during the progression of Alzheimer's disease. Dement Geriatr Cogn Disord 21:205–214PubMedCrossRefGoogle Scholar
  32. 32.
    32. Ginsberg SD, Che S (2005) Expression profile analysis within the human hippocampus: Comparison of CA1 and CA3 pyramidal neurons. J Comp Neurol 487:107–118PubMedCrossRefGoogle Scholar
  33. 33.
    33. Cheung VG et al (1999) Making and reading microarrays. Nat Genet 21:15–19PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephen D. Ginsberg
    • 1
  1. 1.Center for Dementia Research, Nathan Kline Institute, and Departments of Psychiatry and Physiology and NeuroscienceNew York University School of MedicineOrangeburgUSA

Personalised recommendations