Titration of Human Coronaviruses, HCoV-229E and HCoV-OC43, by an Indirect Immunoperoxidase Assay

  • Francine Lambert
  • Hélène Jacomy
  • Gabriel Marceau
  • Pierre J Talbot*
Part of the Methods in Molecular Biology book series (MIMB, volume 454)


Calculation of infectious viral titers represents a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for strains 229E and OC43 of human coronavirus (HCoV). An alternative indirect immunoperoxidase assay (IPA) is herein described for the detection and titration of these viruses. Susceptible cells are inoculated with serial logarithmic dilutions of samples in a 96-well plate. After viral growth, viral detection by IPA yields the infectious virus titer, expressed as “tissue culture infectious dose” (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain replicating virus. This technique is a reliable method for the titration of HCoV in biological samples (cells, tissues, or fluids).

Key Words

human coronavirus HCoV-229E HCoV-OC43 cell and tissue samples titration immunoperoxidase assay TCID50 



This work was supported mainly by grant MT-9203 from the Canadian Institutes of Health Research (Institute of Infection and Immunity).


  1. 1.
    Hamre, D., and Procknow J. J. (1966) A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 121, 190–193.PubMedGoogle Scholar
  2. 2.
    McIntosh, K., Becker W. B., and Chanock R. M. (1967) Growth in suckling mouse brain of ²IBV-like² viruses from patients with upper respiratory tract disease. Proc. Natl. Acad. Sci. USA 58, 2268–2273.PubMedCrossRefGoogle Scholar
  3. 3.
    Tyrrell, D. A. J., and Bynoe, M. L. (1965) Cultivation of a novel type of common-cold virus in organ cultures. Brit. Med. J. 1, 1467–1470.PubMedCrossRefGoogle Scholar
  4. 4.
    McIntosh K. (2004) Coronavirus infection in acute lower respiratory tract disease of infants. J. Infect. Dis. 190, 1033–1041.PubMedCrossRefGoogle Scholar
  5. 5.
    Collins A. R., and Sorensen, O. (1986) Regulation of viral persistence in human glioblastoma and rhabdomyosarcoma cells infected with coronavirus OC43. Microb. Pathog. 1, 573–582.PubMedCrossRefGoogle Scholar
  6. 6.
    Talbot P. J., Ekandé, S., Cashman, N. R., Mounir, S., and Stewart, J. N. (1993) Neurotropism of human coronavirus 229E. Adv. Exp. Med. Biol. 342, 339–346.PubMedCrossRefGoogle Scholar
  7. 7.
    Arbour, N., Ekandé S., Côté, G., Lachance, C., Chagnon, F., Tardieu, M., Cashman, N. R., and Talbot, P. J. (1999) Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J. Virol. 74, 3326–3337.Google Scholar
  8. 8.
    Arbour, N., Côté, G., Lachance, C., Tardieu, M., Cashman, N. R., and Talbot, P. J. (1999) Acute and persistent infection of human neural cell lines by human coronavirus OC43. J. Virol. 73, 3338–3350.PubMedGoogle Scholar
  9. 9.
    Tompkins, W. A., Watrach, A. M., Schmale, J. D., Schultz, R. M., and Harris, J. A. (1974) Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J. Natl. Cancer Inst. 52, 1101–1110.PubMedGoogle Scholar
  10. 10.
    Bonavia, A, Arbour, N., Wee Yong, V., and Talbot, P. J. (1997) Infection of primary cultures of human neural cells by human coronavirus 229E and OC43. J. Virol. 71, 800–806.PubMedGoogle Scholar
  11. 11.
    Karber G. (1931) Beitrag zar Kollktiven Behandlung Pharmakologischer Reiherersuche. Arch. Exp. Pathol. Pharmakol. 162, 480–483.CrossRefGoogle Scholar
  12. 12.
    Tang, B. S., Chan, K. H., Cheng, V. C., Woo, P. C., Lau, S. K., Lam, C. C., Chan, T. L., Wu, A. K., Hung, I. F., Leung, S. Y., and Yuen, K. Y. (2005) Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. J. Virol. 79, 6180–6193.PubMedCrossRefGoogle Scholar
  13. 13.
    Che, X. Y., Qiu, L.W., Liao, Z.Y., Wang, Y. D, Wen, K., Pan, Y. X., Hao, W., Mei, Y. B., Cheng, V. C., and Yuen, K.Y. (2005) Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J. Infect. Dis. 191, 2033–2037.PubMedCrossRefGoogle Scholar
  14. 14.
    Gerna, G., Campanini, G., Rovida, F., Percivalle, E., Sarasini, A., Marchi, A., and Baldanti, F. (2006) Genetic variability of human coronavirus OC43- , 229E- , and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J. Med. Virol. 78, 938–949.PubMedCrossRefGoogle Scholar
  15. 15.
    Butler, N., Pewe, L., Trandem, K., and Perlman, S. (2006) Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology 347, 410–421.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Francine Lambert
    • 1
  • Hélène Jacomy
    • 1
  • Gabriel Marceau
    • 1
  • Pierre J Talbot*
    • 1
  1. 1.Laboratory of NeuroimmunovirologyINRS-Institut Armand- FrappierLavalCanada

Personalised recommendations