Probing E-Cadherin Endocytosis by Morpholino-Mediated Rab5 Knockdown in Zebrafish

  • Florian Ulrich
  • Carl-Philipp Heisenberg
Part of the Methods in Molecular Biology book series (MIMB, volume 440)


The controlled internalization of membrane receptors and lipids is crucial for cells to control signaling pathways and interact with their environment. During clathrin-mediated endocytosis, membrane constituents are transported via endocytic vesicles into early endosomes, from which they are further distributed within the cell. The small guanosine triphosphatase (GTPase) Rab5 is both required and sufficient for the formation of these early endosomes and can be used to experimentally address endocytic processes. Recent evidence shows that endocytic turnover of E-cadherin regulates the migration of mesendodermal cells during zebrafish gastrulation by modulating their adhesive interactions with neighboring cells. This in turn leads to effective and synchronized movement within the embryo. In this review, we discuss techniques to manipulate E-cadherin endocytosis by morpholino-mediated knockdown of rab5 during zebrafish gastrulation. We describe the use of antibodies specifically directed against zebrafish E-cadherin to detect its intracellular localization and of in situ hybridization and primary cell culture to reveal patterns of cell migration and adhesion, respectively.


Cell migration endocytosis endosomes gastrulation mesendoderm morpholino small GTPase rab5 zebrafish 


  1. 1.
    1. Miller, J.R., and McClay, D.R. (1997) Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Dev. Biol. 192, 323–339.CrossRefPubMedGoogle Scholar
  2. 2.
    2. Jarrett, O., Stow, J.L., Yap, A.S., and Key, B. (2002) Dynamin-dependent endocytosis is necessary for convergent-extension movements in Xenopus animal cap explants. Int. J. Dev. Biol. 46, 467–473.PubMedGoogle Scholar
  3. 3.
    3. Claassen, A.K., Anderson, K.I., Marois, E., and Eaton, S. (2005) Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell 9, 805–817.CrossRefGoogle Scholar
  4. 4.
    4. Zerial, M., and McBride, H. (2001) Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117.CrossRefPubMedGoogle Scholar
  5. 5.
    5. Scholpp, S., and Brand, M. (2004) Endocytosis controls spreading and effective signaling range of Fgf8 protein. Curr. Biol. 14, 1834–1841.CrossRefPubMedGoogle Scholar
  6. 6.
    6. Pelkmans, L., Burli, T., Zerial, M., and Helenius, A. (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780.CrossRefPubMedGoogle Scholar
  7. 7.
    7. Ulrich, F., Krieg, M., Schoetz, E.-M., et al. (2005) Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555–564.CrossRefPubMedGoogle Scholar
  8. 8.
    8. Ulrich, F., Concha, M.L., Heid, P.J., et al. (2003) Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130, 5375–5384.CrossRefPubMedGoogle Scholar
  9. 9.
    9. Kilian, B., Mansukoski, H., Barbosa, F.C., Ulrich, F., Tada, M., and Heisenberg, C.-P. (2003) The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech. Dev. 120, 467–476.CrossRefPubMedGoogle Scholar
  10. 10.
    10. Montero, J.A., Carvalho, L., Wilsch-Bräuninger, M., Kilian, B., Mustafa, C., and Heisenberg, C.-P. (2005) Shield formation at the onset of zebrafish gastrulation. Development 132, 1187–1198.CrossRefPubMedGoogle Scholar
  11. 11.
    11. Puech, P.H., Taubenberger, A., Ulrich, F., Krieg, M., Müller, D.J., and Heisenberg, C.-P. (2005) Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J. Cell Sci. 118, 4199–4206.CrossRefPubMedGoogle Scholar
  12. 12.
    12. Babb, S.G., Barnett, J., Doedens, A.L., et al. (2001) Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development. Dev. Dyn. 221, 231–237.CrossRefPubMedGoogle Scholar
  13. 13.
    13. Westerfield, M. (2000) The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 4th ed., University of Oregon Press, Eugene.Google Scholar
  14. 14.
    14. Heisenberg, C.-P., Brand, M., Jiang, Y.J., et al. (1996) Genes involved in forebrain development in the zebrafish, Danio rerio. Development 123, 191–203.PubMedGoogle Scholar
  15. 15.
    15. Ro, H., Soun, K., Kim, E.J., and Rhee, M. (2004) Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol. Cells 17, 373–376.PubMedGoogle Scholar
  16. 16.
    16. Heisenberg, C.-P., Tada, M., Rauch, G.J., et al. (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81.CrossRefPubMedGoogle Scholar
  17. 17.
    17. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.PubMedGoogle Scholar
  18. 18.
    18. Akimenko, M.A., Ekker, M., Wegner, J., Lin, W., and Westerfield, M. (1994) Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J. Neurosci. 14, 3475–3486.PubMedGoogle Scholar
  19. 19.
    19. Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K.W., De Robertis, E.M., and Nüsslein-Volhard, C. (1994) Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120, 843–852.PubMedGoogle Scholar
  20. 20.
    20. Thisse, C., Thisse, B., Halpern, M.E., and Postlethwait, J.H. (1994) Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol. 164, 420–429.CrossRefPubMedGoogle Scholar
  21. 21.
    21. Harlow, E., and Lane, D. (1999) Using Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  22. 22.
    22. Wilson, I.A., Niman, H.L., Houghten, R.A., Cherenson, A.R., Connolly, M.L., and Lerner, R.A. (1984) The structure of an antigenic determinant in a protein. Cell 37, 767–778.CrossRefPubMedGoogle Scholar
  23. 23.
    23. Okada, A., Lansford, R., Weimann, J.M., Fraser, S.E., and McConnell, S.K. (1999) Imaging cells in the developing nervous system with retroirus expressing modified green fluorescent protein. Exp. Neurol. 156, 394–406.CrossRefPubMedGoogle Scholar
  24. 24.
    24. Rebagliati, M.R., Toyama, R., Haffter, P., and Dawid, I. B. (1998) Cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. U. S. A. 95, 9932–9937.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Florian Ulrich
    • 1
  • Carl-Philipp Heisenberg
    • 1
  1. 1.Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations