Skip to main content

Sphingolipids in Macroautophagy

  • Protocol
Autophagosome and Phagosome

summary

Sphingolipids are constituents of biological membranes. Ceramide and sphingosine 1-phosphate (S1P) also act as second messengers and are part of a rheostat system, in which ceramide promotes cell death and growth arrest, and S1P induces proliferation and maintains cell survival. As macroautophagy is a lysosomal catabolic mechanism involved in determining the duration of the lifetime of cells, we raised the question of its regulation by sphingolipid messengers. Using chemical and genetic methods, we have shown by GFP-LC3 staining and analysis of the degradation of long-lived proteins that both ceramide and S1P stimulate autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiegel, S., and Milstien, S. (2003). Sphingosine-1-phosphate: An enigmatic signaling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407.

    Article  CAS  PubMed  Google Scholar 

  2. Ogretmen, B. and Hannun, Y. A. (2004). Biologically active sphingolipids in cancer pathogenesis and treatment. Nat. Rev. Cancer 4, 604–616.

    Article  CAS  PubMed  Google Scholar 

  3. Klionsky, D. J. and Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721.

    Article  CAS  PubMed  Google Scholar 

  4. Levine, B. and Yuan, J. (2005). Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688.

    Article  CAS  PubMed  Google Scholar 

  5. Lavieu, G., Scarlatti, F., Sala, G., et al. (2006). Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J. Biol. Chem. 281, 8518–8527.

    Article  CAS  PubMed  Google Scholar 

  6. Scarlatti, F., Bauvy, C., Ventruti, A., et al. (2004). Ceramide-mediated macro-autophagy involves inhibition of protein kinase B and up-regulation of Beclin 1. J. Biol. Chem. 279, 18384–18391.

    Article  CAS  PubMed  Google Scholar 

  7. Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima, N. (2004). Methods for monitoring autophagy. Int. J. Biochem. Cell Biol. 36, 2491–2502.

    Article  CAS  PubMed  Google Scholar 

  9. Seglen, P. O. and Gordon, P. B. (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 79, 1889–1892.

    Article  CAS  PubMed  Google Scholar 

  10. Bligh, E. G. and Dyer, W. J. (1959). A rapide method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

    CAS  PubMed  Google Scholar 

  11. Hokin, L. E. and Hokin, M. R. (1959). Diglyceride phosphokinase: an enzyme which catalyzes the synthesis of phosphatidic acid. Biochim. Biophys. Acta 31, 285–287.

    Article  CAS  PubMed  Google Scholar 

  12. Preiss, J., Loomis, C. R., Bishop, W. R., Stein, R., Niedel, J. E. and Bell, R. M. (1986). Quantitave measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras-, and sis-transformed normal rat kidney cells. J. Biol. Chem. 261, 8597–8600.

    CAS  PubMed  Google Scholar 

  13. Perry, D. K. and Hannun, Y. A. (1999). The use of diglyceride kinase for quantifying ceramide. Trends Biochem. Sci. 24, 226–227.

    Article  CAS  PubMed  Google Scholar 

  14. Van Veldhoven, P. P., Bishop, W. R., Yurivich, D. A. and Bell, R. M. (1995). Ceramide quantitation: evaluation of a mixed micellar assay using E. coli diacylglycerol kinase. Biochem. Mol. Biol. Int. 36, 21–30.

    PubMed  Google Scholar 

  15. Kohama, T., Olivera, A., Edsall, L., Nagiec, M. M., Dickson, R. and Spiegel, S. (1998). Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem. 273, 23722–23728.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H., Sugiura, M., Nava, V. E., et al. (2000). Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 275, 19513–19520.

    Article  CAS  PubMed  Google Scholar 

  17. Olivera, A., Barlow, K. D. and Spiegel, S. (2000). Assaying sphingosine kinase activity. Methods Enzymol. 311, 215–223.

    Article  CAS  PubMed  Google Scholar 

  18. Olivera, A. and Spiegel, S. (1998). Sphingosine kinase. Assay and product analysis. Methods Mol. Biol. 105, 233–242.

    CAS  PubMed  Google Scholar 

  19. Gijsbers, S., Van der Hoeven, G. and Van Veldhoven, P. P. (2001). Subcellular study of sphingoid base phosphorylation in rat tissues: evidence for multiple sphingosine kinases. Biochim. Biophys. Acta 1532, 37–50.

    CAS  PubMed  Google Scholar 

  20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  21. van Sluijters, D. A., Dubbelhuis, P. F., Blommaart, E. F. and Meijer, A. J. (2000). Amino-acid-dependent signal transduction. Biochem. J. 351(Pt 3), 545–550.

    Article  PubMed  Google Scholar 

  22. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. and Codogno, P. (2000). Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275,992–998.

    Article  CAS  PubMed  Google Scholar 

  23. Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H. and Meijer, A. J. (1997). The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240–246.

    Article  CAS  PubMed  Google Scholar 

  24. Punnonen, E. L., Marjomaki, V. S. and Reunanen, H. (1994). 3-Methyladenine inhibits transport from late endosomes to lysosomes in cultured rat and mouse fibroblasts. Eur. J. Cell Biol. 65, 14–25.

    CAS  PubMed  Google Scholar 

  25. Tolkovsky, A. M., Xue, L., Fletcher, G. C. and Borutaite, V. (2002). Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 84, 233–240.

    Google Scholar 

  26. Vessey, D. A., Kelley, M. and Karliner, J. S. (2005). A rapid radioassay for sphingosine kinase. Anal. Biochem. 337, 136–142.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lavieu, G. et al. (2008). Sphingolipids in Macroautophagy. In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-157-4_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-853-9

  • Online ISBN: 978-1-59745-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics