Skip to main content

Routes of Stem Cell Administration in the Adult Rodent

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 438))

Summary

Stem cell transplantation to replace damaged tissue or correct metabolic disease holds the promise of helping a myriad of human afflictions. Although a great deal of attention has focused on pluripotent stem cells derived from embryos, adult stem cells have been described in a variety of tissues, and they likely will prove to be as beneficial as embryonic stem cells in cell replacement therapy and control of inbred errors of metabolism. We describe methods by which stem cells can be introduced into the nervous system, although the techniques are applicable to any portion of the body to be targeted or any cell that may be used for cell therapy. The first and most straight-forward method is introduction of stem cells directly into the brain parenchyma. The second, which in our hands has proven to be superior in some instances, is introduction of the stem cells into the circulatory system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Flax, J. D., Auroara, s., Yang, C., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  2. Vescovi, A. L., Parati, E. A., Gritti, A., et al. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83.

    Article  CAS  PubMed  Google Scholar 

  3. Kirschenbaum, B., Nedergaard, M., Preuss, A., Barami, K., Fraser, R. A., and Goldman, s. A. (1994) In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 4, 576–589.

    Article  CAS  PubMed  Google Scholar 

  4. Kukekov, V. G., Laywell, E. D., Suslov, O., et al. (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 156, 333–344.

    Article  CAS  PubMed  Google Scholar 

  5. Hammang, J. P., Archer, D. R., and Duncan, I. D. (1997) Myelination following transplantation of EGF-responsive neural stem cells into a myelin-deficient environment. Exp. Neurol. 147, 84–95.

    Article  CAS  PubMed  Google Scholar 

  6. Yandava, B. D., Billinghurst, L. L., and Snyder, E. Y. (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034.

    Article  CAS  PubMed  Google Scholar 

  7. Snyder, E. Y., Yoon, C., Flax, J. D., and Macklis, J. D. (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94, 11663–11668.

    Article  CAS  PubMed  Google Scholar 

  8. Corti, s., Locatelli, F., Papadimitriou, D., et al. (2005) Multipotentiality, homing properties, and pyramidal neurogenesis of CNS-derived LeX(ssea-1)+/CXCR4+ stem cells. FASEB J. 19, 1860–1862.

    CAS  PubMed  Google Scholar 

  9. Bhatnagar, M., Cintra, A., Chadi, G., et al. (1997) Neurochemical changes in the hippocampus of the brown Norway rat during aging. Neurobiol. Aging 18, 319–327.

    Article  CAS  PubMed  Google Scholar 

  10. Shetty, A. K., Hattiangady, B., and Shetty, G. A. (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia 51, 173–186.

    Article  PubMed  Google Scholar 

  11. Hill, W. D., Hess, D. C., Martin-Studdard, A., et al. (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J. Neuropathol. Exp. Neurol. 63, 84–96.

    CAS  PubMed  Google Scholar 

  12. Imitola, J., Raddassi, K., Park, K. I., et al. (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1 (alpha)/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. USA 101, 18117–18122.

    Article  CAS  PubMed  Google Scholar 

  13. Macklis, J. D. (1993) Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore targeted laser photolysis. J. Neurosci. 13, 3848–3863.

    CAS  PubMed  Google Scholar 

  14. Monje, M. L., Toda, h., and Palmer, T. D. (1760) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765.

    Article  Google Scholar 

  15. Toma, J. G., Akhavan, M., Fernandes, K. J. L., et al. (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Natl. Cell Biol. 3, 778–784.

    Article  CAS  Google Scholar 

  16. Bjornson, C. R. R., Rietze, R., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (2000) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534–537.

    Google Scholar 

  17. Eglitis, M. A. and Mezey, E. (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94, 4080–4085.

    Google Scholar 

  18. Azizi, s. A., Stokes, D., Augelli, B. J., DiGirolamo, C., and Prockop, D. J. (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 95, 3908–3913.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J., Li, Y., Wang, L., et al. (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011.

    CAS  PubMed  Google Scholar 

  20. Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96, 10711–10716.

    Google Scholar 

  21. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, h. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  22. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, s. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J. L., Li, Y., and Chopp, M. (2000) Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 39, 711–716.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, L. R., Duan, W. M., Reyes, M., Keene, C. D., Verfaillie, C. M., and Low, W. C. (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. 174, 11–20.

    Article  PubMed  Google Scholar 

  25. Li, Y., Chen, J., and Chopp, M. (2001) Adult bone marrow transplantation after stroke in adult rats. Cell Transplant. 10, 31–40.

    CAS  PubMed  Google Scholar 

  26. Garbuzova-Davis, s., Willing, A. E., Desjarlais, T., Davis Sanberg, C. and Sanberg, P. R., (2005) Transplantation of human umbilical cord blood cells benefits an animal model of Sanfilippo syndrome type B. Stem Cell Dev. 14, 384–394.

    Google Scholar 

  27. Chen, J., Sanberg, P. R., Li, Y., et al. (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32, 2682–2688.

    Article  CAS  PubMed  Google Scholar 

  28. Willing, A. E., Lixian, J., Milliken, M., et al. (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J. Neurosci. Res. 73, 296–307.

    Google Scholar 

  29. Vendrame, M., Gemma, C., de Mesquita, D., et al. (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cell Dev. 14, 595–604.

    Article  CAS  Google Scholar 

  30. Vendrame, M., Cassady, J., Newcomb, J., et al. (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35, 2390–2395.

    Article  PubMed  Google Scholar 

  31. Vendrame, M., Gemma, C., Pennypacker, K. R., et al. (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp. Neurol. 199, 191–200.

    Article  CAS  PubMed  Google Scholar 

  32. Peters, C., Charnas, L. R., Tan, Y., et al. (2004) Cerebral Xlinked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104, 881–888.

    Article  CAS  PubMed  Google Scholar 

  33. Krivit, W., Shapiro, E. G., Peters, C., et al. (1998) Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N. Engl. J. Med. 338, 1119–1126.

    Article  CAS  PubMed  Google Scholar 

  34. Escolar, M. L., Poe, M. D., Provenzale, J. M., et al. (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N. Engl. J. Med. 352, 2069–2081.

    Article  CAS  PubMed  Google Scholar 

  35. Harder, T., Scheiffele, P., Verkade, P., and Simons, K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.

    Article  CAS  PubMed  Google Scholar 

  36. Janes, P. W., Ley, s. C., and Magee, A. I. (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461.

    Article  CAS  PubMed  Google Scholar 

  37. Graybiel, A. M. and Devor, M. (1974) A microelectrophoretic delivery technique for use with horseradish peroxidase. Brain Res. 68, 167–173.

    Google Scholar 

  38. Hedreen, J. C. and McGrath, s. (1977) Observations on labeling of neuronal cell bodies, axons, and terminals after injection of horseradish peroxidase into rat brain. J. Comp. Neurol. 176, 225–246.

    Google Scholar 

  39. Saporta, s. and Kruger, L. (1977) The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 174, 187–208.

    Google Scholar 

  40. Vanegas, h., Hollander, h., and Distel, h. (1978) Early stages of uptake and transport of horseradish-peroxidase by cortical structures, and its use for the study of local neurons and their processes. J. Comp. Neurol. 177, 193–211.

    Article  CAS  PubMed  Google Scholar 

  41. Aboody, K. s., Brown, A., Rainov, N. G., et al. (2000) From the cover: neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA 97, 12846–12851.

    Article  CAS  PubMed  Google Scholar 

  42. Berden, J. h. (1986) Effects of cyclosporin A on autoimmune disease in MRL/1 and BXSB mice. Scand. J. Immunol. 24, 405–411.

    Article  CAS  PubMed  Google Scholar 

  43. Potian, J. A., Aviv, h., Ponzio, N. M., Harrison, J. s., and Rameshwar, P. (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J. Immunol. 171, 3426–3434.

    CAS  PubMed  Google Scholar 

  44. Aggarwal, s. and Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822.

    Google Scholar 

  45. Pan, Y., Nastav, J. B., Zhang, h., Bretton, R. h., Panneton, W. M., and Bicknese, A. R. (2005) Engraftment of freshly isolated or cultured human umbilical cord blood cells and the effect of cyclosporin A on the outcome. Exp. Neurol. 192, 365–372.

    Article  CAS  PubMed  Google Scholar 

  46. Toepfer, M., Folwaczny, C., Klauser, A., Riepl, R. L., Muller-Felber, W., and Pongratz, D. (1999) Gastrointestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 1, 15–19.

    Article  CAS  Google Scholar 

  47. Ostermeyer-Shoaib, B. and Patten, B. M. (1993) IgG subclass deficiency in amyotrophic lateral sclerosis. Acta Neurol. Scand. 87, 192–194.

    Google Scholar 

  48. Lapidot, T., Harel, s., Akiri, B., Granit, R., and Kanner, J. (1999) PH-dependent forms of red wine anthocyanins as antioxidants. J. Agric. Food Chem. 47, 67–70.

    Article  CAS  PubMed  Google Scholar 

  49. Charles, F., Evans, D. F., Castillo, F. D., and Wingate, D. L. (1994) Daytime ingestion of alcohol alters nighttime jejunal motility in man. Digest. Dis. Sci. 39, 51–58.

    Article  CAS  PubMed  Google Scholar 

  50. Marimon, J. M., Bujanda, L., Gutierrez-Stampa, M. A., Cosme, A., and Arenas, J. I. (1998) In vitro bactericidal effect of wine against Helicobacter pylori. Amer. J. Gastroenterol. 93, 1392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Willing, A.E., Garbuzova-Davis, S., Sanberg, P.R., Saporta, S. (2008). Routes of Stem Cell Administration in the Adult Rodent. In: Weiner, L.P. (eds) Neural Stem Cells. Methods in Molecular Biology™, vol 438. Humana Press. https://doi.org/10.1007/978-1-59745-133-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-133-8_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-846-1

  • Online ISBN: 978-1-59745-133-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics