Skip to main content

Measuring Apoptosis in Neural Stem Cells

  • Protocol
Neural Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 438))

Summary

In trauma to, and diseases of, the central nervous system (CNS), apoptotic events are frequently observed in and around areas of damage. Human embryonic stem cells (hESCs) and their progeny have been suggested as possible therapeutic agents in the treatment of CNS diseases. The success of stem cell transplantation not only depends on the capacity of these cells to retain their functionality after transplant into the CNS but also on their ability to resist the in situ environmental cues that may lead to apoptosis. Although there are many methods used to detect apoptosis, the assessment of apoptosis in adherent cultures of primary stem cells and their progeny is more limited. We describe a series of protocols we have used to assess apoptosis in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Przedborski, S. (2005) Pathogenesis of nigral cell death in Parkinson’s disease Parkinsonism Relat. Disord. 11, S3–S7.

    Article  PubMed  Google Scholar 

  2. Hovelmeyer, N., Hao, Z., Kranidioti, K., et al. (2005) Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J. Immunol. 175, 5875–5884.

    PubMed  Google Scholar 

  3. Huang, Y., Erdmann, N., Peng, H., Zhao, Y., and Zheng, J. (2005) The role of TNF related apoptosis-inducing ligand in neurodegenerative diseases. Cell Mol. Immunol. 2, 113–122.

    CAS  PubMed  Google Scholar 

  4. Rosenberg, P. B. (2005) Clinical aspects of inflammation in Alzheimer’s disease. Int. Rev. Psych. 17, 503–514.

    Article  Google Scholar 

  5. Mitsios, N., Gaffney, J., Kumar, P., Krupinski, J., Kumar, S., and Slevin, M. (2006) Pathophysiology of acute ischaemic stroke: an analysis of common signalling mechanisms and identification of new molecular targets. Pathobiology 73, 159–175.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, X., Alber, S., Watkins, S. C., et al. (2006) Proteolysis consistent with activation of caspase-7 after severe traumatic brain injury in humans. J. Neurotrauma 23, 1583–1590.

    Article  PubMed  Google Scholar 

  7. Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., and Lassmann, H. (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717.

    Google Scholar 

  8. Barnett, M. H. and Prineas, J. W. (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468.

    Article  PubMed  Google Scholar 

  9. Scolding, N. J. and Franklin, R. J. (1997) Remyelination in demyelinating disease. Baillieres Clin. Neurol. 6, 525–548.

    CAS  PubMed  Google Scholar 

  10. Scolding, N., Franklin, R., Stevens, S., Heldin, C. H., Compston, A., and Newcombe, J. (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121, 2221–2228.

    Google Scholar 

  11. Hohlfeld, R. (2002) Myelin failure in multiple sclerosis: breaking the spell of Notch. Nat. Med. 8, 1075–1076.

    Article  CAS  PubMed  Google Scholar 

  12. Stangel, M. and Hartung, H. P. (2002) Remyelinating strategies for the treatment of multiple sclerosis. Prog. Neurobiol. 68, 361–376.

    Article  CAS  PubMed  Google Scholar 

  13. Patrikios, P., Stadelmann, C., Kutzelnigg, A., et al. (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172.

    Article  PubMed  Google Scholar 

  14. Barres, B. A., Hart, I. K., Coles, H. S., et al. (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46.

    Article  CAS  PubMed  Google Scholar 

  15. Vartanian, T., Li, Y., Zhao, M., and Stefansson, K. (1995) Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol. Med. 1, 732–743.

    CAS  PubMed  Google Scholar 

  16. Peterson, J. W., Bo, L., Mork, S., Chang, A., Ransohoff, R. M., and Trapp, B. D. (2002) VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions., J. Neuropathol. Exp. Neurol. 61, 539–546.

    PubMed  Google Scholar 

  17. Fox, E. J. (2004) Immunopathology of multiple sclerosis. Neurology 63, S3–S7.

    CAS  PubMed  Google Scholar 

  18. Talbott, J. F., Loy, D. N., Liu, Y., et al. (2005) Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. Exp. Neurol. 192, 11–24.

    Article  CAS  PubMed  Google Scholar 

  19. Barkho, B. Z., Song, H., Aimone, J. B., et al. (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev. 15, 407–421.

    Article  CAS  PubMed  Google Scholar 

  20. Belmadani, A., Tran, P. B., Ren, D., and Miller, R. J. (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J. Neurosci. 26, 3182–3191.

    Article  CAS  PubMed  Google Scholar 

  21. Kadi, L., Selvaraju, R., de Lys, P., Proudfoot, A. E., Wells, T. N., and Boschert, U. (2006) Differential effects of chemokines on oligodendrocyte precursor proliferation and myelin formation in vitro. J. Neuroimmunol. 174, 133–146.

    Article  CAS  PubMed  Google Scholar 

  22. Learish, R. D., Brustle, O., Zhang, S. C., and Duncan, I. D. (1999) Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutant results in widespread formation of myelin. Ann. Neurol. 46, 716–722.

    Article  CAS  PubMed  Google Scholar 

  23. Cummings, B. J., Uchida, N., Tamaki, S. J., and Anderson, A. J. (2006) Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurol. Res. 28, 474–481.

    Article  PubMed  Google Scholar 

  24. Hardison, J. L., Nistor, G., Gonzalez, R., Keirstead, H. S., and Lane, T. E. (2006) Transplantation of glial-committed progenitor cells into a viral model of multiple sclerosis induces remyelination in the absence of an attenuated inflammatory response. Exp. Neurol. 197, 420–429.

    Article  CAS  PubMed  Google Scholar 

  25. Einstein, O., Fainstein, N., Vaknin, I., et al. (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann. Neurol. 61, 209–218.

    Article  CAS  PubMed  Google Scholar 

  26. Einstein, O., Grigoriadis, N., Mizrachi-Kol, R., et al. (2006) Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp. Neurol. 198, 275–284.

    Article  CAS  PubMed  Google Scholar 

  27. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.

    Article  CAS  PubMed  Google Scholar 

  28. Walker, N. I., Harmon, B. V., Gobe, G. C., and c, J. F. (1988) Patterns of cell death. Methods Achiev. Exp. Pathol. 13, 18–54.

    CAS  PubMed  Google Scholar 

  29. Cohen, J. J. (1993) Apoptosis. Immunol. Today 14, 126–130.

    Article  CAS  PubMed  Google Scholar 

  30. Stewart, B. W. (1994) Mechanisms of apoptosis: integration of genetic, biochemical, and cellular indicators. J. Natl. Cancer Inst. 86, 1286–1296.

    Article  CAS  PubMed  Google Scholar 

  31. Kanduc, D., Mittelman, A., Serpico, R., et al. (2002) Cell death: apoptosis versus necrosis (review). Int. J. Oncol. 21, 165–170.

    CAS  PubMed  Google Scholar 

  32. Assuncao Guimaraes, C. and Linden, R. (2004) Programmed cell deaths. Apoptosis and alternative deathstyles. Eur. J. Biochem. 271, 1638–1650.

    Article  PubMed  Google Scholar 

  33. Duvall, E., Wyllie, A. H., and Morris., R. G. (1985) Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56, 351–358.

    CAS  PubMed  Google Scholar 

  34. Compton, M. M. (1992) A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev. 11, 105–119.

    Article  CAS  PubMed  Google Scholar 

  35. Brown, D. G., Sun, X. M., and Cohen, G. M. (1993) Dexamethasone-induced apoptosis involves cleavage of DNA to large fragments prior to internucleosomal fragmentation. J. Biol. Chem. 268,3037–3039.

    CAS  PubMed  Google Scholar 

  36. Ormerod, M. G., Sun, X. M., Snowden, R. T., Davies, R., Fearnhead, H., and Cohen, G. M. (1993) Increased membrane permeability of apoptotic thymocytes: a flow cytometric study. Cytometry 14, 595–602.

    Article  CAS  PubMed  Google Scholar 

  37. Cohen, G. M., Sun, X. M., Fearnhead, H., et al. (1994) Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J. Immunol. 153, 507–516.

    CAS  PubMed  Google Scholar 

  38. Sun, X. M., Snowden, R. T., Dinsdale, D., Ormerod, M. G., and Cohen, G. M. (1994) Changes in nuclear chromatin precede internucleosomal DNA cleavage in the induction of apoptosis by etoposide. Biochem. Pharmacol. 47, 187–195.

    CAS  PubMed  Google Scholar 

  39. Wyllie, A. H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556.

    Article  CAS  PubMed  Google Scholar 

  40. Sgonc, R. and Wick, G. (1994) Methods for the detection of apoptosis. Int. Arch. Allergy Immunol. 105, 327–332.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen, G. M., Sun, X. M., Snowden, R. T., Ormerod, M. G., and Dinsdale, D. (1993) Identification of a transitional preapoptotic population of thymocytes. J. Immunol. 151, 566–574.

    CAS  PubMed  Google Scholar 

  42. Renvoize, C., Biola, A., Pallardy, M., and Breard, J. (1998) Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14, 111–120.

    Article  CAS  PubMed  Google Scholar 

  43. Daniel, P. T. and Krammer, P. H. (1994) Activation induces sensitivity toward APO-1 (CD95)-mediated apoptosis in human B cells. J. Immunol. 152, 5624–5632.

    CAS  PubMed  Google Scholar 

  44. Zupo, S., Isnardi, L., Megna, M., et al. (1996) CD38 expression distinguishes two groups of B-cell chronic lymphocytic leukemias with different responses to anti-IgM antibodies and propensity to apoptosis. Blood 88, 1365–1374.

    CAS  PubMed  Google Scholar 

  45. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  CAS  PubMed  Google Scholar 

  46. Mochizuki, H., Nakamura, N., Nishi, K., and Mizuno, Y. (1994) Apoptosis is induced by 1-methyl-4-phenylpyridinium ion (MPP+) in ventral mesencephalic-striatal co-culture in rat. Neurosci. Lett. 170, 191–194.

    Article  CAS  PubMed  Google Scholar 

  47. Portera-Cailliau, C., Sung, C. H., Nathans, J., and Adler, R. (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 91, 974–978.

    Article  CAS  PubMed  Google Scholar 

  48. Frankfurt, O. S., Robb, J. A., Sugarbaker, E. V., and Villa, L. (1996) Monoclonal antibody to single-stranded DNA is a specific and sensitive cellular marker of apoptosis. Exp. Cell Res. 226, 387–397.

    Article  CAS  PubMed  Google Scholar 

  49. Frankfurt, O. S. and Krishan, A. (2001) Identification of apoptotic cells by formamide-induced DNA denaturation in condensed chromatin. J. Histochem. Cytochem. 49, 369–378.

    CAS  PubMed  Google Scholar 

  50. Johnson, V. L., Ko, S. C., Holmstrom, T. H., Eriksson, J. E., and Chow, S. C. (2000) Effector caspases are dispensable for the early nuclear morphological changes during chemical-induced apoptosis. J. Cell Sci. 113, 2941–2953.

    CAS  PubMed  Google Scholar 

  51. Jones, R. A., Johnson, V. L., Buck, et al. (1998) Fas-mediated apoptosis in mouse hepatocytes involves the processing and activation of caspases. Hepatology 27, 1632–1642.

    Google Scholar 

  52. Dive, C., Gregory, C. D., Phipps, D. J., Evans, D. L., Milner, A. E., and Wyllie, A. H. (1992) Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim. Biophys. Acta 1133, 275–285.

    Article  CAS  PubMed  Google Scholar 

  53. Sun, X. M., MacFarlane, M., Zhuang, J., Wolf, B. B., Green, D. R., and Cohen, G. M. (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem. 274, 5053–5060.

    Article  CAS  PubMed  Google Scholar 

  54. Kolenko, V. M., Uzzo, R. G., Bukowski, R., and Finke, J. H. (2000) Caspase-dependent and -independent death pathways in cancer therapy. Apoptosis 5, 17–20.

    Article  CAS  PubMed  Google Scholar 

  55. Nicotera, P. (2002) Apoptosis and age-related disorders: role of caspase-dependent and caspase-independent pathways. Toxicol. Lett. 127, 189–195.

    Article  CAS  PubMed  Google Scholar 

  56. Cregan, S. P., Dawson, V. L., and Slack, R. S. (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23, 2785–2796.

    Article  CAS  PubMed  Google Scholar 

  57. Stefanis, L. (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11, 50–62.

    Article  CAS  PubMed  Google Scholar 

  58. Kabir, J., Lobo, M., and Zachary, I. (2002) Staurosporine induces endothelial cell apoptosis via focal adhesion kinase dephosphorylation and focal adhesion disassembly independent of focal adhesion kinase proteolysis. Biochem. J. 367, 145–155.

    Article  CAS  PubMed  Google Scholar 

  59. Daniel, P. T., Sturm, I., Ritschel, S., Friedrich, K., Dorken, B., Bendzko, P., and Hillebrand, T. (1999) Detection of genomic DNA fragmentation during apoptosis (DNA ladder) and the simultaneous isolation of RNA from low cell numbers. Anal. Biochem. 266, 110–115.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lund, B.T., Kelland, E.E. (2008). Measuring Apoptosis in Neural Stem Cells. In: Weiner, L.P. (eds) Neural Stem Cells. Methods in Molecular Biology™, vol 438. Humana Press. https://doi.org/10.1007/978-1-59745-133-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-133-8_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-846-1

  • Online ISBN: 978-1-59745-133-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics