Definitions and Criteria for Stem Cells

  • Leslie P. Weiner
Part of the Methods in Molecular Biology™ book series (MIMB, volume 438)


The working definition of a stem cell includes self-renewal and the ability to differentiate into several cell types. There are also aspects of clonality and potency. Stem cells can be derived from early embryos after the formation of the blastocyst or from fetal, postnatal, or adult sources. Neural stem cells (NSCs) arise from embryonic ectoderm that forms neuroepithelial cells. The neuroepithelial cells generate radial glia that produce fetal and adult NSCs within the central nervous system (CNS). Adult NSC and restricted progenitors are found in the several regions of the CNS throughout life. Human embryonic stem cells, with their ability for self-renewal, clonal capacity, normal karyotype, and potential to form NSCs, easily may be the best source of NSCs and progenitors for treating disease. However, the complexity of NSCs, neural patterning, and the formation of multiple populations of neurons, astrocytes, and oligodendrocytes warrant the need for intense studies to characterize these cells and to define the microenvironment that will be needed to support them in the diseased CNS. Ways to produce well-defined populations, avoid oncogenicity, and ensure survival need to be clarified before clinical application can begin.

Key Words

Adult stem cell NSC-derived from human embryonic stem cell neurogenesis wnt sonic hedgehog basic helix-loop-helix protein Olig1 Olig2 


  1. 1.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.CrossRefPubMedGoogle Scholar
  2. 2.
    Reubinoff, B. (2007) Current status of human embryonic stem cell research. Ethics Law Moral Philos. Reprod. Biomed. 2, 121–124.Google Scholar
  3. 3.
    Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.CrossRefPubMedGoogle Scholar
  4. 4.
    Lois, C. and Alvarez-Buylla, A. (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077.Google Scholar
  5. 5.
    Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., and McKay, R. D. (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140.CrossRefPubMedGoogle Scholar
  6. 6.
    Liu, Y. and Rao, M. S. (2003) Transdifferentiation: fact or artifact. J. Cell. Biochem. 88, 29–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Weissman, I. L., Anderson, D. J., and Gage, F. (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol. 17, 387–403.Google Scholar
  8. 8.
    Rideout, W. M., 3rd, Eggan, K., and Jaenisch, R. (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098.CrossRefPubMedGoogle Scholar
  9. 9.
    Weissman, I. L. (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168.CrossRefPubMedGoogle Scholar
  10. 10.
    Smith, A. G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462.CrossRefPubMedGoogle Scholar
  11. 11.
    Sasal, Y., Lu, B., Steinbelsser, H., and De Robertis, E. M. (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 378, 419.Google Scholar
  12. 12.
    Lamb, T. M., Knecht, A. K., Smith, W. C., et al. (1993) Neural induction by the secreted polypeptide noggin. Science 262, 713–718.CrossRefPubMedGoogle Scholar
  13. 13.
    Oelgeschlager, M., Kuroda, H., Reversade, B., and De Robertis, E. M. (2003) Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev. Cell 4, 219–230.CrossRefPubMedGoogle Scholar
  14. 14.
    Willert, K., Brown, J. D., Danenberg, E., et al. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452.CrossRefPubMedGoogle Scholar
  15. 15.
    Diez del Corral, R., Breitkreuz, D. N., and Storey, K. G. (2002) Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signaling. Development 129, 1681–1691.Google Scholar
  16. 16.
    Mathis, L., Kulesa, P. M., and Fraser, S. E. (2001) FGF receptor signaling is required to maintain neural progenitors during Hensen’s node progression. Nat. Cell Biol. 3, 559–566.CrossRefPubMedGoogle Scholar
  17. 17.
    Ericson, J., Muhr, J., Jessell. T. M., and Edlund, T. (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int. J. Dev. Biol. 39, 809–816.PubMedGoogle Scholar
  18. 18.
    Lee, S. K. and Pfaff, S. L. (2003) Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38, 731–745.CrossRefPubMedGoogle Scholar
  19. 19.
    Sun, T., Echelard, Y., Lu, R., Yuk, D., Kaing, S., Stiles, C. D., and Rowitch, D. H. (2001) Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube. Curr. Biol. 11, 1413–1420.CrossRefPubMedGoogle Scholar
  20. 20.
    Novitch, B. G., Chen, A. I., and Jessell, T. M. (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou, Q., Choi, G., and Anderson, D. J. (2001) The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou, Q. and Anderson, D. J. (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73.CrossRefPubMedGoogle Scholar
  23. 23.
    Kriegstein, A. R. and Gotz, M. (2003) Radial glia diversity: a matter of cell fate. Glia 43, 37–43.CrossRefPubMedGoogle Scholar
  24. 24.
    Malatesta, P., Hartfuss, E., and Gotz, M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263.PubMedGoogle Scholar
  25. 25.
    Johansson, C. B. (2003) Mechanism of stem cells in the central nervous system. J. Cell. Physiol. 196, 409–418.CrossRefPubMedGoogle Scholar
  26. 26.
    Gould, E., Vail, N., Wagers, M., and Gross, C. G. (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc. Natl. Acad. Sci. USA 98, 10910–10917.CrossRefPubMedGoogle Scholar
  27. 27.
    Bernier, P. J., Bedard, A., Vinet, J., Levesque, M., and Parent, A. (2002) Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc. Natl. Acad. Sci. USA 99, 11464–11469.CrossRefPubMedGoogle Scholar
  28. 28.
    Bedard, A., Cossette, M., Levesque, M., and Parent, A. (2002) Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci. Lett. 328, 213–216.CrossRefPubMedGoogle Scholar
  29. 29.
    Bedard, A., Levesque, M., Bernier, P. J., and Parent, A. (2002) The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur. J. Neurosci. 16, 1917–1924.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao, M., Momma, S., Delfani, K., et al. (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. USA 100, 7925–7930.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Leslie P. Weiner
    • 1
  1. 1.Department of NeurologyKeck School of Medicine of the University of Southern CaliforniaLos Angeles

Personalised recommendations