Skip to main content

Micro-Computed Tomography: A Method for the Non-Destructive Evaluation of the Three-Dimensional Structure of Biological Specimens

  • Protocol
Osteoporosis

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 455))

Abstract

The large increase in interest in micro-computed tomography (micro-CT) over the last decade reflects the+ need for a method able to non-destructively visualize the internal three-dimensional structure of an object. Thereby, the real beauty of computed tomography lies in the fact that it is available for a large range of nominal resolutions, which allows hierarchical imaging from whole bodies down to the tissue level. Although micro-CT is currently mainly used for imaging of hard tissue (i.e., bone and tooth), future developments might also allow high soft tissue contrast either using appropriate contrast agents or x-ray contrast mechanisms. This chapter aims to review the steps necessary for a successful micro-CT measurement. Although the actual measurement is often machine dependent, the chapter does not describe a specific system but rather lists all steps that eventually have to be considered to set up a measurement, run the measurement, process the image data, and get morphometric indices as a result. The chapter provides an easy understandable manual that should allow newcomers to perform successful measurements and hence to best profit from this powerful technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Radon, J. (1917) Über die Bestimmung von Funktionen durch ihre Integralwerte längs bes-timmter Mannigfaltigkeiten. Ber Verb Sächs Akad Wiss Leipzig Math-Nat Kl 69, 262–277.

    Google Scholar 

  2. 2. Cormack, A. M. (1963) Representation of a function by its line integrals with some radiological applications. J Appl Phys 34, 2722–2727.

    Article  Google Scholar 

  3. 3. Cormack, A. M. (1964) Representation of a function by its line integrals with some radiological applications. II. J Appl Phys 35, 2908–2913.

    Article  Google Scholar 

  4. Hounsfield, G. N. (1972) A method of and apparatus for examination of a body by radiation such as x-ray or gamma radiation. Patent Specification GB.

    Google Scholar 

  5. 5. Hounsfield, G. N. (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46, 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Hounsfield, G. N. (1977) EMI scanner. Proc the Roy Soc London Series B Biol Sci 195, 281–289.

    Article  CAS  Google Scholar 

  7. 7. Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., et al. (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4, 3–11.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Müller, R., Rüegsegger, P. (1994) Morphological validation of the 3D structure of non-invasive bone biopsies. Abstracts 10th Int. Workshop on Bone Densitometry. Bone Miner 25, 8.

    Article  Google Scholar 

  9. 9. Rüegsegger, P., Koller, B., Müller, R. (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58, 24–29.

    Article  PubMed  Google Scholar 

  10. 10. Bonse, U., Busch, F. (1996) x-ray computed microtomography (micro-CT) using synchrotron radiation (SR). Prog Biophys Mol Biol 65, 133–169.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Stampanoni, M., Borchert, G., Abela, R., et al (2002) Bragg magnifier: A detector for submi-crometer x-ray computer tomography. J Appl Phys 92, 7630–7635.

    Article  CAS  Google Scholar 

  12. 12. Nuzzo, S., Lafage-Proust, M. H., Martin-Badosa, E., et al. (2002) Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J Bone Miner Res 17, 1372–1382.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Nuzzo, S., Peyrin, F., Cloetens, P., et al. (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29, 2672–2681.

    Article  PubMed  Google Scholar 

  14. 14. Müller, R., Gerber, S. C., Hayes, W. C. (1998) Micro-compression: a novel technique for the non-destructive assessment of local bone failure. Technol Health Care 6, 433–444.

    PubMed  Google Scholar 

  15. 15. Nazarian, A., Stauber, M., Muller, R. (2005) Design and implementation of a novel mechanical testing system for cellular solids. J Biomed Mater Res B Appl Biomater 73B, 400–411.

    Article  CAS  Google Scholar 

  16. 16. Grodzins, L. (1983) Optimum energies for x-ray transmission tomography of small samples. Nuclear Instr Methods 206, 541–545.

    Article  CAS  Google Scholar 

  17. 17. Gonzalez, R., Woods, R. (2002) Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  18. 18. Odgaard, A. (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–328.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Parfitt, A. M., Drezner, M. K., Glorieux, F. H., et al. (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2, 595–610.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Müller, R., Rüegsegger, P. (1995) Three-dimensional finite element modelling of non-inva-sively assessed trabecular bone structures. Med Eng Phys 17, 126–133.

    Article  PubMed  Google Scholar 

  21. 21. Lorensen, W. E., Cline, H. E. (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21, 163–169.

    Article  Google Scholar 

  22. 22. Hildebrand, T., Rüegsegger, P. (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185, 67–75.

    Article  Google Scholar 

  23. 23. Danielson, P-E. (1980) Euclidean distance mapping. Comp Vision Graph Image Processing 14, 227–248.

    Article  Google Scholar 

  24. 24. Odgaard, A., Gundersen, H. J. (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Hildebrand, T., Ruegsegger, P. (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1, 15–23.

    Article  PubMed  Google Scholar 

  26. 26. Stauber, M., Müller, R. (2006) Volumetric spatial decomposition of trabecular bone into rods and plates: a new method for local bone morphometry. Bone 38, 475–484.

    Article  PubMed  Google Scholar 

  27. 27. Nishikawa, Y. , Jinnai, H., Koga, T., et al. (1998) Measurements of interfacial curvatures of bicontinuous structure from three-dimensional digital images. 1. A parallel surface method. Langmuir 14, 1242–1249.

    Article  CAS  Google Scholar 

  28. 28. Hahn, M., Vogel, M., Pompesius-Kempa, M., et al (1992) Trabecular bone pattern factor-a new parameter for simple quantification of bone microarchitecture. Bone 13, 327–330.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Jinnai, H., Watashiba, H., Kajihara, T., et al. (2002) Surface curvatures of trabecular bone microarchitecture. Bone 30, 191–194.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Whitehouse, W. J. (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101, 153–168.

    CAS  PubMed  Google Scholar 

  31. 31. Odgaard, A., Jensen, E. B., Gundersen, H. J. (1990) Estimation of structural anisotropy based on volume orientation. A new concept. J Microsc 157, 149–162.

    CAS  PubMed  Google Scholar 

  32. 32. Cruz-Orive, L. M., Karlsson, L. M., Larsen, S. E., et al. (1992) Characterizing anisotropy: a new concept. Micron Microscopica Acta 23, 75–76.

    Article  Google Scholar 

  33. 33. Pothuaud, L., Porion, P., Lespessailles, E., et al. (2000) A new method for three-dimensional skeleton graph analysis of porous media: application to trabecular bone microarchitecture. J Microsc 199, 149–161.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Saha, P. K., Chaudhuri, B. B. (1996) 3D digital topology under binary transformation with applications. Comput Vis Image Understanding 63, 418–429.

    Article  Google Scholar 

  35. 35. Gomberg, B. R., Saha, P. K., Wehrli, F. W. (2003) Topology-based orientation analysis of trabecular bone networks. Med Phys 30, 158–168.

    Article  PubMed  Google Scholar 

  36. 36. Stauber, M., Rapillard, L., van Lenthe, G. H., et al. (2006) Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res 21, 586–595.

    Article  PubMed  Google Scholar 

  37. 37. Kohler, T., Beyeler, M., Webster, D., et al. (2005) Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements. Calcif Tissue Int 77, 281–290.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stauber, M., Müller, R. (2008). Micro-Computed Tomography: A Method for the Non-Destructive Evaluation of the Three-Dimensional Structure of Biological Specimens. In: Westendorf, J.J. (eds) Osteoporosis. Methods In Molecular Biology™, vol 455. Humana Press. https://doi.org/10.1007/978-1-59745-104-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-104-8_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-828-7

  • Online ISBN: 978-1-59745-104-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics