Skip to main content

Plant–Virus Interactions

  • Protocol
Plant Virology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 451))

Abstract

A variety of techniques have been used to examine plant viral genomes, the functions of virus-encoded proteins, plant responses induced by virus infection and plant–virus interactions. This overview considers these technologies and how they have been used to identify novel viral and plant proteins or genes involved in disease and resistance responses, as well as defense signaling. These approaches include analysis of spatial and temporal responses by plants to infection, and techniques that allow the expression of viral genes transiently or transgenically in planta, the expression of plant and foreign genes from virus vectors, the silencing of plants genes, imaging of live, infected cells, and the detection of interactions between viral proteins and plant gene products, both in planta and in various in vitro or in vivo systems. These methods and some of the discoveries made using these approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Hull, R. (2002) Matthews' Plant Virology, 4th ed. Academic, San Diego.

    Google Scholar 

  2. 2. Zaitlin, M. and Palukaitis, P. (2000) Advances in understanding plant viruses and virus disease. Annu. Rev. Phytopathol. 38, 117–143.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Davies, J.W. and Hull, R. (1982) Genome expression of plant positive-strand RNA viruses. J. Gen. Virol. 61, 1–14.

    Article  CAS  Google Scholar 

  4. 4. Takebe, I. (1983) Protoplasts in plant-virus research. Intl. Rev. Cytol. Suppl. 16, 89–111.

    Google Scholar 

  5. 5. Boyer, J.C. and Haenni, A.L. (1994) Infectious transcripts and cDNA clones of RNA viruses. Virology 198, 415–426.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H., and Roe, B.A. (1980) Cloning in singlestranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143, 161–178.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Zoller, M.J. and Smith M. (1982) Oligonucleotide-directed mutagenesis using M13-derived vectors – an efficient and general procedure for production of point mutations in any fragment of DNA. Nucleic Acids Res. 10, 6487–6500.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Norris, K., Norris, F., Christiansen, L., and Fiil, N. (1983) Efficient site-directed mutagenesis by simultaneous use of 2 primers. Nucleic Acids Res. 11, 5103–5112.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A., eds. (2005) Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee of the Taxonomy of Viruses. Elsevier, Amsterdam.

    Google Scholar 

  11. 11. Daubert, S.D., Schoelz, J.E., Debao, L., and Shepherd, R.J. (1984) Expression of disease symptoms in cauliflower mosaic virus genomic hybrids.J. Mol. Appl. Genet. 2, 537–547.

    PubMed  CAS  Google Scholar 

  12. 12. Schoelz, J.E., Shepherd, R.J., and Daubert, S. (1986) Region VI of cauliflower mosaic virus encodes a host range determinant. Mol. Cell Biol. 6, 2632–2637.

    PubMed  CAS  Google Scholar 

  13. 13. Bonneville, J.M., Sanfacon, H., Für, J., and Hohn, T. (1989) Posttranscriptional transactivation in cauliflower mosaic virus. Cell 59, 1135–1143.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Gowda, S., Wu, F.C., Scholthof, H.B., and Shepherd, R.J. (1989) Gene VI of figwort mosaic virus (caulimovirus group) functions in posttranscriptional expression of genes on the fulllength RNA transcript. Proc. Natl. Acad. Sci. USA 86, 9203–9207.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Saito, T., Meshi, T., Takamatsu, N., and Okada, Y. (1987) Coat gene sequence of tobacco mosaic virus encodes host response determinant. Proc. Natl. Acad. Sci. USA 84, 6074–6077.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Knorr, D.A. and Dawson, W.O. (1988) A point mutation in the tobacco mosaic capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc. Natl. Acad. Sci. USA 85, 170–174.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Culver, J.N. (1997) Viral avirulence genes, in Plant–Microbe Interactions, Vol. 2 (Stacey G. and Keen, N., eds.), Chapman and Hall, New York, pp. 196–219.

    Google Scholar 

  18. 18. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signalling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Schmidt, I., Blanc, S., Esperandieu, P., Kuhl, G., Devauchelle, G., Louis, C., and Cerutti, M. (1994) Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission. Proc. Natl. Acad. Sci. USA 91, 8885–8889.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Leh, V., Jacquot, E., Geldreich, A., Hermann, T., Leclerc, D., Cerutti, M., et al. (1999) Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. EMBO J. 18, 7077–7085.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Drucker, M., Froissart, R., Hebrard, E., Uzest, M., Esperandieu, P., Mani, J.C., et al. (2002) Intracellular distribution of viral gene products regulate a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proc. Natl. Acad. Sci. USA 99, 2422–2427.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Citovsky, V., Knorr, D., Schuster, G., and Zambryski, P. (1990) The P30 movement protein of tobacco mosaic virus is a single-stranded nucleic acid binding protein. Cell 60, 637–647.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Wieczorek, A. and Sanfacon, H. (1993) Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194, 734–742.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Cillo, F., Roberts, I.M., and Palukaitis, P. (2002) In situ localization and tissue distribution of the replication-associated proteins of Cucumber mosaic virus in tobacco and cucumber. J. Virol. 76, 10654–10664.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78, 1101–1115.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Bendahmane, A., Kanyuka, K., and Baulcombe, D.C. (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–792.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Bendamahne, A., Querci, M., Kanyuka, K., and Baulcombe, D.C. (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 21, 73–81.

    Article  Google Scholar 

  28. 28. Lanfermeijer, F.C., Warmink, J., and Hille, J. (2005) The products of the broken TM-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J. Exper. Bot. 56, 2925–2933.

    Article  CAS  Google Scholar 

  29. 29. Lanfermeijer, F.C., Dijkhuis, J., Sturre, M.J.G., de Haan, P., Hille, J. (2003) Cloning and characterization of the durable Tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol. Biol. 52, 1037–1049.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Brommonschenkel, S.H., Frary, A., and Tanksley, S.D. (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant-Microbe Interact. 13, 1130–1138.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi, H., Miller, J., Nozaki, Y., Sukamto, Takeda, M., Shah, J., et al. (2002) RCY1, and Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism.

    Google Scholar 

  32. 32. Chisholm, S.T., Mahajan, S.K., Whitham, S.A., Yamamoto, M.L., and Carrington, J.C. (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of Tobacco etch virus. Proc. Natl. Acad. Sci. USA 97, 489–494.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Whitham, S.A., Anderberg, R.J., Chisholm, S.T. and Carrington, J.C. (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12, 569–582.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Robaglia, C. and Caranta, C. (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11, 40–45.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Gilliland, A., Murphy, A.M., and Carr, J.P. (2006) Induced resistance mechanisms, in Natural Resistance Mechanisms of Plants to Viruses (Loebenstein G. and Carr J.P., eds.), Springer, Amsterdam, pp. 125–145.

    Chapter  Google Scholar 

  36. 36. Loebenstein, G. and Gera, A. (1981) Inhibitor or virus replication released from tobacco mosaic virus-infected protoplasts of a local lesion-responding tobacco cultivar. Virology 114, 132–139.

    Article  PubMed  CAS  Google Scholar 

  37. 37. Spiegel, S., Gera, A., Salomon, R., Ahl, P., Harlap, S., and Loebenstein, G. (1989) Recovery of an inhibitor of virus replication from the intercellular fluid of hypersensitive tobacco infected with tobacco mosaic virus and from uninfected induced-resistant tissue. Phytopathology 79, 258–262.

    Article  CAS  Google Scholar 

  38. 38. Akad, A., Teverovsky, E., Gidoni, D., Elad, Y., Kirshner, B., Ray-David, D., et al. (2005) Resistance to Tobacco mosaic virus and Botrytis cinerea in tobacco transformed with complementary DNA encoding an inhibitor of viral replication-like protein. Ann. Appl. Biol. 147, 89–100.

    Article  CAS  Google Scholar 

  39. 39. Carr, J.P. and Klessig, D.F. (1989) The pathogenesis-related proteins of plants, in Genetic Engineering: Principles and Methods, Vol. 11 (Setlow, J.K., ed.), Plenum, New York, pp. 65–100.

    Google Scholar 

  40. 40. Gianinazzi, S., Martin, C., and Vallé J.-C. (1970) Hypersensibilité aux virus, tempéture et protiés solubles chez le Nicotiana ‘Xanthi nc’. Apparition de nouvelles macromoléles lors de la réession de la synthèse virale. C.R. Acad. Sci. Paris D 270, 2383–2386.

    CAS  Google Scholar 

  41. 41. van Loon, L.C. and van Kammen, A. (1970) Polyacrylamide disc electrophoresis of soluble leaf proteins from Nicotiana tabacum var. Samsun and Samsun NN.2. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40, 199–211.

    Article  Google Scholar 

  42. 42. van Loon, L.C. and van Strien, E.A. (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Molec. Plant Pathol. 55, 85–97.

    Article  Google Scholar 

  43. 43. Ward, E.R., Uknes, S.J., Williams, S.C., Dincher,S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Méaux, J.P., and Ryals, J.A. (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3, 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  44. 44. Kessmann, H., Staub, T., Hoffmann, C., Maetzke, T., Herzog, J., Ward, E., et al. (1994) Induction of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol. 32, 439–459.

    Article  PubMed  CAS  Google Scholar 

  45. 45. Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T., et al. (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33, 271–283.

    Article  PubMed  CAS  Google Scholar 

  46. 46. Fraser, R.S.S. (1998) Introduction to classical crossprotection, in Methods in Molecular Biology, Vol. 81: Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Foster, G.D. and Taylor, S.C., eds.), Humana Press, Totawa, NJ, pp. 13–24.

    Google Scholar 

  47. 47. Cutt, J.R., Harpster, M.H., Dixon, D.C., Carr, J.P., Dunsmuir, P., and Klessig, D.F. (1989) Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology 173, 89–97.

    Article  PubMed  CAS  Google Scholar 

  48. 48. Linthorst, H.J.M., Meuwissen, R.L.J., Kauffmann, S., and Bol, J.F. (1989) Constitutive expression of pathogenesis-related proteins PR-1, GRP and PR-S in tobacco has no effect on virus infection. Plant Cell 1, 285–291.

    Article  PubMed  CAS  Google Scholar 

  49. 49. Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., et al. (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein-1a. Proc. Natl. Acad. Sci. USA 90, 7327–7331.

    Article  PubMed  CAS  Google Scholar 

  50. 50. Xie, Z.X., Fan, B.F., Chen, C.H., and Chen, Z.X. (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl. Acad. Sci. USA 98, 6516–6521.

    Article  PubMed  CAS  Google Scholar 

  51. 51. Ornstein, L. (1964) Disc electrophoresis. I. Background and theory. Ann. NY Acad. Sci. 121, 321–349.

    Article  PubMed  CAS  Google Scholar 

  52. 52. Davis, B.J. (1964) Disc electrophoresis. 2. Method and application to human serum proteins. Ann. NY Acad. Sci. 121, 404–427.

    Article  PubMed  CAS  Google Scholar 

  53. 53. White, R.F. (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99, 410–412.

    Article  PubMed  CAS  Google Scholar 

  54. 54. van Loon, L.C. (1983) The induction of pathogenesis-related proteins by pathogens and specific chemicals. Netherlands J. Plant Pathol. 89, 265–273.

    Article  Google Scholar 

  55. 55. Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. (1990) Salicylic acid–a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250, 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  56. 56. Métraux, J.-P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., et al. (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250, 1004–1006.

    Article  PubMed  Google Scholar 

  57. 57. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756.

    Article  PubMed  CAS  Google Scholar 

  58. 58. Raskin, I., Ehman, A., Melander, W.R., and Meeuse, B.J.D. (1987) Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237, 1601–1602.

    Article  PubMed  CAS  Google Scholar 

  59. 59. Muller, A., Duchting, P. and Weiler, E.W. (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216, 44–56.

    Article  PubMed  CAS  Google Scholar 

  60. Huang, W.E., Huang, L., Preston, G., Naylor, M., Carr, J.P., Li, Y., et al. (2006) Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. Plant J 46, in press.

    Google Scholar 

  61. 61. Matthews, R.E.F. (1991) Plant Virology, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  62. 62. Laval, V., Koroleva, O.A., Murphy, E., Lu, C.G., Milner, J.J., Hooks, M.A. and Tomos, A.D. (2002) Distribution of actin gene isoforms in the Arabidopsis leaf measured in microsamples from intact individual cells. Planta 215, 287–292.

    Article  PubMed  CAS  Google Scholar 

  63. 63. Técsi, L.I., Maule, A.J., Smith, A.M., and Leegood, R.C. (1994) Complex, localized changes in CO2 assimilation and starch content associated with the susceptible interaction between cucumber mosaic virus and a cucurbit host. Plant J. 5, 837–847.

    Article  Google Scholar 

  64. 64. Técsi, L.I., Maule, A.J., Smith, A.M., and Leegood, R.C. (1994) Metabolic alterations in cotyledons of Cucurbita pepo infected by cucumber mosaic virus. J. Exp. Bot. 45, 1541–1551.

    Article  Google Scholar 

  65. 65. Técsi, L.I., Smith, A.M., Maule, A.J., and Leegood, R.C. (1996) A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with cucumber mosaic virus. Plant Physiol. 111, 975–985.

    PubMed  Google Scholar 

  66. 66. Wang, D. and Maule, A.J. (1995) Inhibition of host gene expression associated with plant virus replication. Science 267, 229–231.

    Article  PubMed  CAS  Google Scholar 

  67. 67. Bevan, M.W., Flavell, R.B., and Chilton, M.D. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187.

    Article  CAS  Google Scholar 

  68. 68. Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., et al. (1983). Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  69. 69. Herrera-Estrella, L., Depicker, A., van Montagu, M., and Schell. J. (1983) Expression of chi-maeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213.

    Article  CAS  Google Scholar 

  70. 70. Murai, N., Sutton, D.W., Murray, M.G., Slightom, J.L., Merlo, D.J., Reichert, N.A., et al. (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222, 476–482.

    Article  PubMed  CAS  Google Scholar 

  71. 71. Powell-Abel, P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., and Beachy, R.N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.

    Article  Google Scholar 

  72. 72. Goldbach, R., Bucher, E., and Prins, M. (2003) Resistance mechanisms to plant viruses: an overview. Virus Res. 92, 207–212.

    Article  PubMed  CAS  Google Scholar 

  73. 73. Whitham, S. McCormick, S., and Baker, B. (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. USA 93, 8776–8781.

    Article  PubMed  CAS  Google Scholar 

  74. 74. Baughman, G.A., Jacobs, J.D., and Howell, S.H. (1988) Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 85, 733–837.

    Article  PubMed  CAS  Google Scholar 

  75. 75. Deom, C.M., Oliver, M.J., and Beachy, R.M. (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389–394.

    Article  PubMed  CAS  Google Scholar 

  76. 76. Lindbo J.A. and Dougherty, W.G. (1992) Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol. Plant-Microbe Interact. 5, 144–153.

    Article  PubMed  CAS  Google Scholar 

  77. 77. Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M., and Dougherty, W.G. (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1743–1759.

    Article  Google Scholar 

  78. 78. Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H., and Vance, V.B. (1998) A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95, 13079–13084.

    Article  PubMed  CAS  Google Scholar 

  79. 79. Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Sing, S.W., and Baulcombe, D.C. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746.

    Article  PubMed  CAS  Google Scholar 

  80. 80. Kasschau, K.D. and Carrington, J.C. (1998) A counterdefense strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470.

    Article  PubMed  CAS  Google Scholar 

  81. 81. Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998) Initiation and maintenance of virusinduced gene silencing. Plant Cell 10, 937–946.

    Article  PubMed  CAS  Google Scholar 

  82. 82. Liu, Y., Schiff, M., Maranthe, R., and Dinesh-Kumar, S.P. (2002) Tobacco Rar1, EDS1, and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429.

    Article  PubMed  CAS  Google Scholar 

  83. 83. Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., et al. (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 5690–5699.

    Article  PubMed  CAS  Google Scholar 

  84. 84. Scholthof, H.B., Scholthof K.-B.G., and Jackson A.O. (1995) Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7, 1157–1172.

    Article  PubMed  CAS  Google Scholar 

  85. 85. Chu, M., Park, J.-W., and Scholthof, H.B. (1999) Separate regions on the Tomato bushy stunt virus p22 protein mediate cell-to-cell movement versus elicitation of effective resistance responses. Mol. Plant Microbe Interact. 12, 285–292.

    Article  CAS  Google Scholar 

  86. 86. Oparka, K.J., Boevink, P., and Santa Cruz, S. (1996) Studying the movement of plant viruses using green fluorescent protein. Trends Plant Sci. 1, 412–418.

    Article  Google Scholar 

  87. 87. Heinlein, M. (2002). Plasmodesmata: dynamic regulation and role in macromolecular cell-tocell signaling. Curr. Opin. Plant Biol. 5, 543–552.

    Article  PubMed  CAS  Google Scholar 

  88. 88. Wright, K.M., Duncan, G. H., Pradel, K. S., Carr, F., Wood, S., Oparka, K. J., and Santa Cruz, S. (2000) Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375–1385.

    Article  PubMed  CAS  Google Scholar 

  89. 89. Murphy, A.M. and Carr, J.P. (2002) Salicylic acid has cell-specific effects on Tobacco mosaic virus replication and cell-to-cell movement. Plant Physiol. 128, 552–563.

    Article  PubMed  CAS  Google Scholar 

  90. 90. Grimsley, N., Hohn, B., Hohn, T., and Walden, R. (1986) ‘Agroinfection’, an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA 83, 3282–3286.

    Article  PubMed  CAS  Google Scholar 

  91. 91. Grimsley, N., Hohn, T., Davies, J.W., and Hohn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.

    Article  CAS  Google Scholar 

  92. 92. Leiser, R.M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Lemaire, H., Guilley, H., et al. (1992) Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proc. Natl. Acad. Sci. USA 89, 9136–9140.

    Article  PubMed  CAS  Google Scholar 

  93. 93. Prüfer D., Wipfscheibel, C., Richards, K., Guilley, H., Lecoq, H., and Jonard, G. (1995) Synthesis of a full-length infectious cDNA clone of cucurbit aphid-borne yellows virus and its use in gene exchange experiments with structural proteins from other luteoviruses. Virology 214, 150–158.

    Article  PubMed  Google Scholar 

  94. 94. Turpen, T.H., Turpen, A.M., Weinzettl, N., Kumagai, M.H., and Dawson, W.O. (1993) Transfection of whole plants from wounds inoculated with Agrobacterium-tumefaciens containing cDNA of tobacco mosaic virus. J. Virol. Methods 42, 227–240.

    Article  PubMed  CAS  Google Scholar 

  95. 95. Lamprecht, S. and Jelkmann, W. (1997) Infectious cDNA clones used to identify strawberry mild yellow edge-associated potexvirus as causal agent of the disease. J. Gen. Virol. 78, 2347–2353.

    PubMed  CAS  Google Scholar 

  96. 96. Liu, L. and Lomonossoff, G.P. (2002) Agroinfection as rapid method for propagating Cowpea-mosaic virus-based constructs. J. Virol. Methods 105, 343–348.

    Article  PubMed  CAS  Google Scholar 

  97. 97. Chiba, M., Reed, J.C., Prokhnevsky, A.I., Chapman, E.J., Mawassi, M., Koonin, E.V., et al. (2006) Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346, 7–14.

    Article  PubMed  CAS  Google Scholar 

  98. 98. Schob, H., Kunc, C., and Meins, F. (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol. Gen. Genet. 256, 581–585.

    Article  PubMed  CAS  Google Scholar 

  99. 99. Abbink, T.E.M., Tjernberg, P.A., Bol, J.F., and Linthorst, H.J.M. (1998) Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol. Plant-Microbe Interact. 11, 1242–1246.

    Article  CAS  Google Scholar 

  100. 100. Erickson, F., Holzberg, S., Calderon-Urrea, A., Handley, V., Axtell, M., Corr, C., and Baker, B. (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J. 18, 67–75.

    Article  PubMed  CAS  Google Scholar 

  101. 101. Johansen, L.K. and Carrington, J.C. (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 126, 930–938.

    Article  PubMed  CAS  Google Scholar 

  102. 102. Yocum, R.R., Hanley, S., West, R. Jr., and Ptashne, M. (1984) Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1–GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1985–1998.

    PubMed  CAS  Google Scholar 

  103. 103. Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M.G., and Laliberte, J.F. (2000) Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J. Virol. 74, 7730–7737.

    Article  PubMed  CAS  Google Scholar 

  104. 104. Leonard, S., Viel, C., Beauchemin, C., Daigneault, N., Fortin, M.G., and Laliberte, J.F. (2004) Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J. Gen. Virol. 85, 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  105. 105. Moury, B., Morel, C., Johansen, E., Guilbaud, L., Souche, S., Ayme, V., et al. (2004) Mutations in Potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17, 322–329.

    Article  PubMed  Google Scholar 

  106. 106. Nicolas, O., Dunnington, S.W., Gotow, L.F., Pirone, T.P. and Hellmann, G.M. (1997) Variations in the VPg protein allow a Potyvirus to overcome va gene resistance in tobacco. Virology 237, 452–459.

    Article  PubMed  CAS  Google Scholar 

  107. 107. Simone N.L, Bonner R.F., Gillespie J.W., Emmert-Buck M.R., and Liotta L.A. (1998) Lasercapture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276.

    Article  PubMed  CAS  Google Scholar 

  108. 108. Rubio, V., Shen, Y.P., Saijo, Y., Liu, Y.L., Gusmaroli, G., Dinesh-Kumar, S.P., and Deng, X.W. (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J. 41, 767–778.

    Article  PubMed  CAS  Google Scholar 

  109. 109. Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 615–629.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JES acknowledges support from the U.S. Department of Agriculture/National Research Initiative Competitive Grant No. 2003–35319–13778. PP was supported by a grant-in-aid from the Scottish Executive Environment and Rural Affairs Department to the SCRI.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Palukaitis, P., Carr, J.P., Schoelz, J.E. (2008). Plant–Virus Interactions. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-102-4_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-827-0

  • Online ISBN: 978-1-59745-102-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics