Abstract
A variety of techniques have been used to examine plant viral genomes, the functions of virus-encoded proteins, plant responses induced by virus infection and plant–virus interactions. This overview considers these technologies and how they have been used to identify novel viral and plant proteins or genes involved in disease and resistance responses, as well as defense signaling. These approaches include analysis of spatial and temporal responses by plants to infection, and techniques that allow the expression of viral genes transiently or transgenically in planta, the expression of plant and foreign genes from virus vectors, the silencing of plants genes, imaging of live, infected cells, and the detection of interactions between viral proteins and plant gene products, both in planta and in various in vitro or in vivo systems. These methods and some of the discoveries made using these approaches are discussed.
Keywords
- Agroinfection
- Agroinfiltration
- Green fluorescent protein
- Plant gene isolation
- Microarrays
- PR proteins
- Resistance responses
- Salicylic acid
- Transgenic plants
- Virus-induced gene silencing
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
1. Hull, R. (2002) Matthews' Plant Virology, 4th ed. Academic, San Diego.
2. Zaitlin, M. and Palukaitis, P. (2000) Advances in understanding plant viruses and virus disease. Annu. Rev. Phytopathol. 38, 117–143.
3. Davies, J.W. and Hull, R. (1982) Genome expression of plant positive-strand RNA viruses. J. Gen. Virol. 61, 1–14.
4. Takebe, I. (1983) Protoplasts in plant-virus research. Intl. Rev. Cytol. Suppl. 16, 89–111.
5. Boyer, J.C. and Haenni, A.L. (1994) Infectious transcripts and cDNA clones of RNA viruses. Virology 198, 415–426.
6. Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.
7. Sanger, F., Coulson, A.R., Barrell, B.G., Smith, A.J.H., and Roe, B.A. (1980) Cloning in singlestranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143, 161–178.
8. Zoller, M.J. and Smith M. (1982) Oligonucleotide-directed mutagenesis using M13-derived vectors – an efficient and general procedure for production of point mutations in any fragment of DNA. Nucleic Acids Res. 10, 6487–6500.
9. Norris, K., Norris, F., Christiansen, L., and Fiil, N. (1983) Efficient site-directed mutagenesis by simultaneous use of 2 primers. Nucleic Acids Res. 11, 5103–5112.
10. Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A., eds. (2005) Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee of the Taxonomy of Viruses. Elsevier, Amsterdam.
11. Daubert, S.D., Schoelz, J.E., Debao, L., and Shepherd, R.J. (1984) Expression of disease symptoms in cauliflower mosaic virus genomic hybrids.J. Mol. Appl. Genet. 2, 537–547.
12. Schoelz, J.E., Shepherd, R.J., and Daubert, S. (1986) Region VI of cauliflower mosaic virus encodes a host range determinant. Mol. Cell Biol. 6, 2632–2637.
13. Bonneville, J.M., Sanfacon, H., Für, J., and Hohn, T. (1989) Posttranscriptional transactivation in cauliflower mosaic virus. Cell 59, 1135–1143.
14. Gowda, S., Wu, F.C., Scholthof, H.B., and Shepherd, R.J. (1989) Gene VI of figwort mosaic virus (caulimovirus group) functions in posttranscriptional expression of genes on the fulllength RNA transcript. Proc. Natl. Acad. Sci. USA 86, 9203–9207.
15. Saito, T., Meshi, T., Takamatsu, N., and Okada, Y. (1987) Coat gene sequence of tobacco mosaic virus encodes host response determinant. Proc. Natl. Acad. Sci. USA 84, 6074–6077.
16. Knorr, D.A. and Dawson, W.O. (1988) A point mutation in the tobacco mosaic capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc. Natl. Acad. Sci. USA 85, 170–174.
17. Culver, J.N. (1997) Viral avirulence genes, in Plant–Microbe Interactions, Vol. 2 (Stacey G. and Keen, N., eds.), Chapman and Hall, New York, pp. 196–219.
18. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signalling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101–2108.
19. Schmidt, I., Blanc, S., Esperandieu, P., Kuhl, G., Devauchelle, G., Louis, C., and Cerutti, M. (1994) Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission. Proc. Natl. Acad. Sci. USA 91, 8885–8889.
20. Leh, V., Jacquot, E., Geldreich, A., Hermann, T., Leclerc, D., Cerutti, M., et al. (1999) Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. EMBO J. 18, 7077–7085.
21. Drucker, M., Froissart, R., Hebrard, E., Uzest, M., Esperandieu, P., Mani, J.C., et al. (2002) Intracellular distribution of viral gene products regulate a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proc. Natl. Acad. Sci. USA 99, 2422–2427.
22. Citovsky, V., Knorr, D., Schuster, G., and Zambryski, P. (1990) The P30 movement protein of tobacco mosaic virus is a single-stranded nucleic acid binding protein. Cell 60, 637–647.
23. Wieczorek, A. and Sanfacon, H. (1993) Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194, 734–742.
24. Cillo, F., Roberts, I.M., and Palukaitis, P. (2002) In situ localization and tissue distribution of the replication-associated proteins of Cucumber mosaic virus in tobacco and cucumber. J. Virol. 76, 10654–10664.
25. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78, 1101–1115.
26. Bendahmane, A., Kanyuka, K., and Baulcombe, D.C. (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–792.
27. Bendamahne, A., Querci, M., Kanyuka, K., and Baulcombe, D.C. (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 21, 73–81.
28. Lanfermeijer, F.C., Warmink, J., and Hille, J. (2005) The products of the broken TM-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J. Exper. Bot. 56, 2925–2933.
29. Lanfermeijer, F.C., Dijkhuis, J., Sturre, M.J.G., de Haan, P., Hille, J. (2003) Cloning and characterization of the durable Tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol. Biol. 52, 1037–1049.
30. Brommonschenkel, S.H., Frary, A., and Tanksley, S.D. (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant-Microbe Interact. 13, 1130–1138.
Takahashi, H., Miller, J., Nozaki, Y., Sukamto, Takeda, M., Shah, J., et al. (2002) RCY1, and Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism.
32. Chisholm, S.T., Mahajan, S.K., Whitham, S.A., Yamamoto, M.L., and Carrington, J.C. (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of Tobacco etch virus. Proc. Natl. Acad. Sci. USA 97, 489–494.
33. Whitham, S.A., Anderberg, R.J., Chisholm, S.T. and Carrington, J.C. (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12, 569–582.
34. Robaglia, C. and Caranta, C. (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci. 11, 40–45.
35. Gilliland, A., Murphy, A.M., and Carr, J.P. (2006) Induced resistance mechanisms, in Natural Resistance Mechanisms of Plants to Viruses (Loebenstein G. and Carr J.P., eds.), Springer, Amsterdam, pp. 125–145.
36. Loebenstein, G. and Gera, A. (1981) Inhibitor or virus replication released from tobacco mosaic virus-infected protoplasts of a local lesion-responding tobacco cultivar. Virology 114, 132–139.
37. Spiegel, S., Gera, A., Salomon, R., Ahl, P., Harlap, S., and Loebenstein, G. (1989) Recovery of an inhibitor of virus replication from the intercellular fluid of hypersensitive tobacco infected with tobacco mosaic virus and from uninfected induced-resistant tissue. Phytopathology 79, 258–262.
38. Akad, A., Teverovsky, E., Gidoni, D., Elad, Y., Kirshner, B., Ray-David, D., et al. (2005) Resistance to Tobacco mosaic virus and Botrytis cinerea in tobacco transformed with complementary DNA encoding an inhibitor of viral replication-like protein. Ann. Appl. Biol. 147, 89–100.
39. Carr, J.P. and Klessig, D.F. (1989) The pathogenesis-related proteins of plants, in Genetic Engineering: Principles and Methods, Vol. 11 (Setlow, J.K., ed.), Plenum, New York, pp. 65–100.
40. Gianinazzi, S., Martin, C., and Vallé J.-C. (1970) Hypersensibilité aux virus, tempéture et protiés solubles chez le Nicotiana ‘Xanthi nc’. Apparition de nouvelles macromoléles lors de la réession de la synthèse virale. C.R. Acad. Sci. Paris D 270, 2383–2386.
41. van Loon, L.C. and van Kammen, A. (1970) Polyacrylamide disc electrophoresis of soluble leaf proteins from Nicotiana tabacum var. Samsun and Samsun NN.2. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40, 199–211.
42. van Loon, L.C. and van Strien, E.A. (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Molec. Plant Pathol. 55, 85–97.
43. Ward, E.R., Uknes, S.J., Williams, S.C., Dincher,S.S., Wiederhold, D.L., Alexander, D.C., Ahl-Goy, P., Méaux, J.P., and Ryals, J.A. (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3, 1085–1094.
44. Kessmann, H., Staub, T., Hoffmann, C., Maetzke, T., Herzog, J., Ward, E., et al. (1994) Induction of systemic acquired resistance in plants by chemicals. Annu. Rev. Phytopathol. 32, 439–459.
45. Whitham, S.A., Quan, S., Chang, H.S., Cooper, B., Estes, B., Zhu, T., et al. (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33, 271–283.
46. Fraser, R.S.S. (1998) Introduction to classical crossprotection, in Methods in Molecular Biology, Vol. 81: Plant Virology Protocols: From Virus Isolation to Transgenic Resistance (Foster, G.D. and Taylor, S.C., eds.), Humana Press, Totawa, NJ, pp. 13–24.
47. Cutt, J.R., Harpster, M.H., Dixon, D.C., Carr, J.P., Dunsmuir, P., and Klessig, D.F. (1989) Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology 173, 89–97.
48. Linthorst, H.J.M., Meuwissen, R.L.J., Kauffmann, S., and Bol, J.F. (1989) Constitutive expression of pathogenesis-related proteins PR-1, GRP and PR-S in tobacco has no effect on virus infection. Plant Cell 1, 285–291.
49. Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., et al. (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein-1a. Proc. Natl. Acad. Sci. USA 90, 7327–7331.
50. Xie, Z.X., Fan, B.F., Chen, C.H., and Chen, Z.X. (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl. Acad. Sci. USA 98, 6516–6521.
51. Ornstein, L. (1964) Disc electrophoresis. I. Background and theory. Ann. NY Acad. Sci. 121, 321–349.
52. Davis, B.J. (1964) Disc electrophoresis. 2. Method and application to human serum proteins. Ann. NY Acad. Sci. 121, 404–427.
53. White, R.F. (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99, 410–412.
54. van Loon, L.C. (1983) The induction of pathogenesis-related proteins by pathogens and specific chemicals. Netherlands J. Plant Pathol. 89, 265–273.
55. Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I. (1990) Salicylic acid–a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250, 1002–1004.
56. Métraux, J.-P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., et al. (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250, 1004–1006.
57. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754–756.
58. Raskin, I., Ehman, A., Melander, W.R., and Meeuse, B.J.D. (1987) Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237, 1601–1602.
59. Muller, A., Duchting, P. and Weiler, E.W. (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216, 44–56.
Huang, W.E., Huang, L., Preston, G., Naylor, M., Carr, J.P., Li, Y., et al. (2006) Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. Plant J 46, in press.
61. Matthews, R.E.F. (1991) Plant Virology, 3rd ed. Academic Press, San Diego.
62. Laval, V., Koroleva, O.A., Murphy, E., Lu, C.G., Milner, J.J., Hooks, M.A. and Tomos, A.D. (2002) Distribution of actin gene isoforms in the Arabidopsis leaf measured in microsamples from intact individual cells. Planta 215, 287–292.
63. Técsi, L.I., Maule, A.J., Smith, A.M., and Leegood, R.C. (1994) Complex, localized changes in CO2 assimilation and starch content associated with the susceptible interaction between cucumber mosaic virus and a cucurbit host. Plant J. 5, 837–847.
64. Técsi, L.I., Maule, A.J., Smith, A.M., and Leegood, R.C. (1994) Metabolic alterations in cotyledons of Cucurbita pepo infected by cucumber mosaic virus. J. Exp. Bot. 45, 1541–1551.
65. Técsi, L.I., Smith, A.M., Maule, A.J., and Leegood, R.C. (1996) A spatial analysis of physiological changes associated with infection of cotyledons of marrow plants with cucumber mosaic virus. Plant Physiol. 111, 975–985.
66. Wang, D. and Maule, A.J. (1995) Inhibition of host gene expression associated with plant virus replication. Science 267, 229–231.
67. Bevan, M.W., Flavell, R.B., and Chilton, M.D. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187.
68. Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., et al. (1983). Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 4803–4807.
69. Herrera-Estrella, L., Depicker, A., van Montagu, M., and Schell. J. (1983) Expression of chi-maeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213.
70. Murai, N., Sutton, D.W., Murray, M.G., Slightom, J.L., Merlo, D.J., Reichert, N.A., et al. (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222, 476–482.
71. Powell-Abel, P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T., and Beachy, R.N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.
72. Goldbach, R., Bucher, E., and Prins, M. (2003) Resistance mechanisms to plant viruses: an overview. Virus Res. 92, 207–212.
73. Whitham, S. McCormick, S., and Baker, B. (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. USA 93, 8776–8781.
74. Baughman, G.A., Jacobs, J.D., and Howell, S.H. (1988) Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 85, 733–837.
75. Deom, C.M., Oliver, M.J., and Beachy, R.M. (1987) The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 389–394.
76. Lindbo J.A. and Dougherty, W.G. (1992) Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol. Plant-Microbe Interact. 5, 144–153.
77. Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M., and Dougherty, W.G. (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1743–1759.
78. Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R., Mallory, A.C., Smith, T.H., and Vance, V.B. (1998) A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95, 13079–13084.
79. Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Sing, S.W., and Baulcombe, D.C. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746.
80. Kasschau, K.D. and Carrington, J.C. (1998) A counterdefense strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95, 461–470.
81. Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998) Initiation and maintenance of virusinduced gene silencing. Plant Cell 10, 937–946.
82. Liu, Y., Schiff, M., Maranthe, R., and Dinesh-Kumar, S.P. (2002) Tobacco Rar1, EDS1, and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429.
83. Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., et al. (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 5690–5699.
84. Scholthof, H.B., Scholthof K.-B.G., and Jackson A.O. (1995) Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7, 1157–1172.
85. Chu, M., Park, J.-W., and Scholthof, H.B. (1999) Separate regions on the Tomato bushy stunt virus p22 protein mediate cell-to-cell movement versus elicitation of effective resistance responses. Mol. Plant Microbe Interact. 12, 285–292.
86. Oparka, K.J., Boevink, P., and Santa Cruz, S. (1996) Studying the movement of plant viruses using green fluorescent protein. Trends Plant Sci. 1, 412–418.
87. Heinlein, M. (2002). Plasmodesmata: dynamic regulation and role in macromolecular cell-tocell signaling. Curr. Opin. Plant Biol. 5, 543–552.
88. Wright, K.M., Duncan, G. H., Pradel, K. S., Carr, F., Wood, S., Oparka, K. J., and Santa Cruz, S. (2000) Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375–1385.
89. Murphy, A.M. and Carr, J.P. (2002) Salicylic acid has cell-specific effects on Tobacco mosaic virus replication and cell-to-cell movement. Plant Physiol. 128, 552–563.
90. Grimsley, N., Hohn, B., Hohn, T., and Walden, R. (1986) ‘Agroinfection’, an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA 83, 3282–3286.
91. Grimsley, N., Hohn, T., Davies, J.W., and Hohn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.
92. Leiser, R.M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Lemaire, H., Guilley, H., et al. (1992) Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proc. Natl. Acad. Sci. USA 89, 9136–9140.
93. Prüfer D., Wipfscheibel, C., Richards, K., Guilley, H., Lecoq, H., and Jonard, G. (1995) Synthesis of a full-length infectious cDNA clone of cucurbit aphid-borne yellows virus and its use in gene exchange experiments with structural proteins from other luteoviruses. Virology 214, 150–158.
94. Turpen, T.H., Turpen, A.M., Weinzettl, N., Kumagai, M.H., and Dawson, W.O. (1993) Transfection of whole plants from wounds inoculated with Agrobacterium-tumefaciens containing cDNA of tobacco mosaic virus. J. Virol. Methods 42, 227–240.
95. Lamprecht, S. and Jelkmann, W. (1997) Infectious cDNA clones used to identify strawberry mild yellow edge-associated potexvirus as causal agent of the disease. J. Gen. Virol. 78, 2347–2353.
96. Liu, L. and Lomonossoff, G.P. (2002) Agroinfection as rapid method for propagating Cowpea-mosaic virus-based constructs. J. Virol. Methods 105, 343–348.
97. Chiba, M., Reed, J.C., Prokhnevsky, A.I., Chapman, E.J., Mawassi, M., Koonin, E.V., et al. (2006) Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346, 7–14.
98. Schob, H., Kunc, C., and Meins, F. (1997) Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Mol. Gen. Genet. 256, 581–585.
99. Abbink, T.E.M., Tjernberg, P.A., Bol, J.F., and Linthorst, H.J.M. (1998) Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol. Plant-Microbe Interact. 11, 1242–1246.
100. Erickson, F., Holzberg, S., Calderon-Urrea, A., Handley, V., Axtell, M., Corr, C., and Baker, B. (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J. 18, 67–75.
101. Johansen, L.K. and Carrington, J.C. (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 126, 930–938.
102. Yocum, R.R., Hanley, S., West, R. Jr., and Ptashne, M. (1984) Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1–GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1985–1998.
103. Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M.G., and Laliberte, J.F. (2000) Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J. Virol. 74, 7730–7737.
104. Leonard, S., Viel, C., Beauchemin, C., Daigneault, N., Fortin, M.G., and Laliberte, J.F. (2004) Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J. Gen. Virol. 85, 1055–1063.
105. Moury, B., Morel, C., Johansen, E., Guilbaud, L., Souche, S., Ayme, V., et al. (2004) Mutations in Potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17, 322–329.
106. Nicolas, O., Dunnington, S.W., Gotow, L.F., Pirone, T.P. and Hellmann, G.M. (1997) Variations in the VPg protein allow a Potyvirus to overcome va gene resistance in tobacco. Virology 237, 452–459.
107. Simone N.L, Bonner R.F., Gillespie J.W., Emmert-Buck M.R., and Liotta L.A. (1998) Lasercapture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet. 14, 272–276.
108. Rubio, V., Shen, Y.P., Saijo, Y., Liu, Y.L., Gusmaroli, G., Dinesh-Kumar, S.P., and Deng, X.W. (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J. 41, 767–778.
109. Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 615–629.
Acknowledgments
JES acknowledges support from the U.S. Department of Agriculture/National Research Initiative Competitive Grant No. 2003–35319–13778. PP was supported by a grant-in-aid from the Scottish Executive Environment and Rural Affairs Department to the SCRI.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Humana Press, a part of Springer Science + Business Media, LLC
About this protocol
Cite this protocol
Palukaitis, P., Carr, J.P., Schoelz, J.E. (2008). Plant–Virus Interactions. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_1
Download citation
DOI: https://doi.org/10.1007/978-1-59745-102-4_1
Publisher Name: Humana Press
Print ISBN: 978-1-58829-827-0
Online ISBN: 978-1-59745-102-4
eBook Packages: Springer Protocols