Skip to main content

Using Plant Phylogeny to Predict Detoxification of Triazine Herbicides

  • Protocol
Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

A plant useful for phytoremediation has first to grow in the presence of the target pollutant without being harmed. The plant must not only be resistant to the pollutant, but must also be able to remove it from the environment and transform it into nontoxic metabolites or end products. Differences in the ability of various plant species to accumulate and metabolize particular pollutants do exist, indicating that in choosing the most appropriate species in the development of any phytoremediation process, natural biodiversity should be better explored and exploited. Plant taxonomy and phytochemistry can help in the exploitation of biochemical specificities of plants that produce natural chemicals with structures similar to xenobiotic compounds. In the case of atrazine, however, numerous results obtained for agronomical purposes are extremely useful in choosing the most appropriate families or genera for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biziuk, M., Przyjazny, A., Czerwinski, J., and Wiergowski, M. (1996) Occurrence and determination of pesticides in natural and treated waters. J. Chromat. 754, 103ā€“123.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Coleman, J. O., Frova, C., Schrƶder, P., and Tissut, M. (2002) Exploiting plant metabolism for the phytoremediation of persistant herbicides. Environ. Sci. Pollut.Res. 9, 18ā€“28.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Capel, P. D. and Larson, S. J. (2001) Effect of scale on the behavior of atrazine in surface water. Environ. Sci. Technol. 35, 648ā€“657.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Barfield, B., Blevins, R., Fogle, A., et al. (1998) Water quality impacts of natural filter strips. Am. Soc. Agric. Eng. 41, 371ā€“381.

    Google ScholarĀ 

  5. Wenk, M., Bourgeois, M., Allen, J., and Stucki, G. (1997) Effects of atrazinemineralizing microorganisms on weed growth in atrazine-treated soils. J. Agric.Food Chem. 45, 4474ā€“4480.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Jensen, K., Stephenson, G., and Hunt, L. (1977) Detoxification of atrazine in three Gramineae subfamilies. Weed Sci. 25, 212ā€“220.

    CASĀ  Google ScholarĀ 

  7. McKinlay, R. and Kasperek, K. (1998) Observations on decontamination of herbicide-polluted water by marsh plant systems. Water Res. 33, 505ā€“511.

    ArticleĀ  Google ScholarĀ 

  8. Fernandez, T. R., Whitwell, T., Riley, M. B., and Bernard, C. R. (1999) Evaluating semi-aquatic herbaceous perennials for use in herbicide phytoremediation. J. Amer.Soc. Hort. Sci 124, 539

    CASĀ  Google ScholarĀ 

  9. Cull, R., Hunter, H., Hunter, M., and Truong, P. (2000) Application of vetiver grass technology in off-site pollution control II. Tolerance to herbicides under selected wetland conditions. Second International Vetiver Conference pp. 404ā€“408. January 182-22, 2000, Phetchaburi, Thailand.

    Google ScholarĀ 

  10. Nair, D. R., Burken, J. G., Licht, L. A., and Schnoor, J. L. (1993) Mineralization and uptake of triazine pesticide in soil-plant systems. J. Environ. Eng. 119, 842ā€“854.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Burken, J. G. and Schnoor, J. L. (1996) Phytoremediation: plant uptake of atrazine and role of root exudates. J. Environ. Eng. 122, 958ā€“963.

    ArticleĀ  Google ScholarĀ 

  12. Burken, J. G. and Schnoor, J. L. (1997) Uptake and metabolism of atrazine by poplar trees. Environ. Sci. Technol. 31, 1399ā€“1406.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Cole, D. and Edwards, R. (2000) Secondary metabolism of agrochemicals in plants. In: Metabolism of Agrochemicals in Plants, Roberts, T.ed.), John Wiley and Sons, Chichester, UK, pp. 107ā€“154.

    Google ScholarĀ 

  14. Cole, D., Edwards, R., and Owen, W. (1987) The role of metabolism in herbicide selectivity. In: Progress in Pesticide Biochemistry and Toxicology, (Hudson, D., and Robert, T.eds.), John Wiley, Chichester, UK, pp. 57ā€“104.

    Google ScholarĀ 

  15. Kearney, P., Kaufman, D., and Sheets, T. (1965) Metabolites of simazine by Asperillus fumigatus. J. Agric. Food Chem. 13, 369ā€“372.

    ArticleĀ  Google ScholarĀ 

  16. Shimabukuro, R., Kadunce, R., and Frear, D. (1966) Dealkylation of atrazine in mature pea plants. J. Agric. Food Chem. 14, 392ā€“395.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Pillai, C., Weete, J., and Davis, D. (1977) Metabolism of atrazine by Spartina alterniflora. 1-chloroform-soluble metabolites. J. Agric. Food Chem. 25, 852ā€“855.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Edwards, R. and Owen, W. (1989) The comparative metabolism of the s-triazine herbicide atrazine and terbutryne in suspension cultures of potato and wheat. Pest. Biochem. Physiol. 34, 246ā€“254.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Cherifi, M., Raveton, M., Picciocchi, A., Ravanel, P., and Tissut, M. (2001) Atrazine metabolism in corn seedlings. Plant Physiol. Biochem. 39, 665ā€“672.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Shimabukuro, R. and Swanson, H. (1969) Atrazine metabolism, selectivity and mode of action. J. Agric. Food Chem. 17, 199ā€“205.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Shimabukuro, R., Walsh, W., Lamoureux, G., and Stafford, L. (1973) Atrazine metabolism in sorghum: chloroform-soluble intermediates in the N-dealkylation and glutathione conjugation pathways. J. Agric. Food Chem. 21, 1031ā€“1036.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Shimabukuro, R., Swanson, H., and Walsh, W. (1970) Glutathione conjugation: atrazine detoxication mechanism in corn. Plant Physiol. 46, 103ā€“107.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Coleman, J. O., Blake-Kalff, M. M., and Davies, E. T. (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci. 2, 144ā€“151.

    ArticleĀ  Google ScholarĀ 

  24. Halkier, B. A. (1996) Catalytic reactivites and structure/function relationships of cytochrome P450 enzymes. Phytochem. 43, 1ā€“21.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Bolwell, P. G., Bozak, K., and Zimerlin, A. (1994) Plant cytochrome P450. Phytochem. 37, 1491ā€“1506.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Werck-Reichhart, D. (1995) Herbicide metabolism and selectivity: role of cytochrome P450. Brighton Crop Protection Conference, Weeds. 2, 813ā€“822.

    Google ScholarĀ 

  27. Burnet, M. W., Loveys, B. R., Holtum, J. A., and Powles, S. B. (1993) Increased detoxification is a mechanism of simazine resistance in Lolium rigidum. Pest. Biochem. Physiol. 46, 207ā€“218.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Castelfranco, P., Foy, C., and Deutsch, D. (1961) Non enzymatic detoxification of 2-chloro-4,6-bis(ethylamino)-s-triazine (simazine) by extracts of Zea mays. Weeds 9, 580ā€“591.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Raveton, M., Ravanel, P., Serre, A.-M., Nurit, F., and Tissut, M. (1997) Kinetics of uptake and metabolism of atrazine in model plant system. Pest. Sci. 49, 157ā€“163.

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Shimabukuro, R. (1968) Atrazine metabolism in resistant corn and sorghum. Plant Physiol. 43, 1925ā€“1930.

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Niemeyer, H. M. (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Graminae. Phytochem. 27, 3349ā€“3358.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Niemeyer, H. M., Pesel, E., Francke, S., and Francke, W. (1989) Ingestion of the benzoxazinone DIMBOA from wheat plants by aphids. Phytochem. 28, 2307ā€“2310.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Pethƶ, M. (1992) Occurence and physiological role of benzoxazinones and their derivatives. III: possible role of 7-methoxy-benzoxazinone in the iron uptake of maize. Acta Agron. Hung. 41, 57ā€“64.

    Google ScholarĀ 

  34. Pethƶ, M. (1992) Occurence and physiological role of benzoxazinones and their derivatives. IV: isolation of hydroxamic acids from wheat and rye root secretion. Acta Agron. Hung. 41, 167ā€“175.

    Google ScholarĀ 

  35. Barnes, J. P. and Putnam, A. R. (1987) Role of benzoxazinones in allelopathy by rye (Secale cereale L.). J. Chem. Ecol. 13, 889ā€“906.

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Nair, M., Whitenack, C. J., and Putnam, A. R. (1990) 2,2-oxo-1,1ā€²-azobenzene. A microbially transformed allelochemical from 2,3-benzoxazolinone: I. J. Chem. Ecol. 16, 353ā€“364.

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Hamilton, R. H. (1964) Tolerance of several grass species to 2-chloro-triazine herbicides in relation to degradation and content of benzoxazinone derivatives. J. Agric. Food Chem. 12, 14ā€“17.

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Raveton, M., Ravanel, P., Kaouadji, M., Bastide, J., and Tissut, M. (1997) The chemical transformation of atrazine in corn seedlings. Pest. Biochem. 58, 199ā€“208.

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Shimabukuro, R. (1967) Atrazine metabolism and herbicidal selectivity. Plant Physiol. 42, 1269ā€“1276.

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Lamoureux, G. L., Shimabukuro, R. H., Swanson, H., and Frear, D. (1970) Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised sorghum leaf section. J. Agric. Food Chem. 18, 81ā€“186.

    ArticleĀ  CASĀ  Google ScholarĀ 

  41. Lamoureux, G. L., Stafford, L. E., and Shimabukuro, R. H. (1972) Conjugation of 2-chloro-4, 6-bis(alkylamino)-s-triazines in higher plants. J. Agric. Food Chem. 20, 1004ā€“1010.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Lamoureux, G. L., Stucki, G., Shimabukuro, R. H., and Zaylskie, R. G. (1973) Atrazine metabolism in sorghum: catabolism of the glutathione conjugate of atrazine. J. Agric. Food Chem. 21, 1020ā€“1030.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Dixon, D., Cole, D. J., and Edwards, R. (1997) Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbice substrates in maize (Zea mays).Pest. Sci. 50, 72ā€“82.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Shimabukuro, R., Frear, D., Swanson, H., and Walsh, W. (1971) Glutathione conjugation: an enzymatic basis for atrazine resistance. Plant Physiol. 47, 10ā€“14.

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Hatton, P. J., Dixon, D., Cole, D. J., and Edwards, R. (1996) Glutathione transferase activities and herbicide selectivity in maize and associated weed species. Pest. Sci. 46, 267ā€“275.

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. De Prado, R., Romera, E., and MenĆ©dez, J. (1995) Atrazine detoxification in Panicum dichotomiflorum and target site Polygonum lapathifolium. Pest. Biochem. Physiol. 52, 1ā€“11.

    ArticleĀ  Google ScholarĀ 

  47. De Prado, R., Lopez-Martinez, N., and Gonzalez-Gutierrez, J. (2000) Identification of two mechanims of atrazine resistance in Setaria faberi and Setaria viridis biotypes. Pest. Biochem. Physiol. 67, 114ā€“124.

    ArticleĀ  Google ScholarĀ 

  48. GimĆ©nez-Espinosa, R., Romera, E., Tena, M., and De Prado, R. (1996) Fate of atrazine in treated and pristine accessions of three Setaria species. Pest. Biochem. Physiol. 56, 196ā€“207.

    ArticleĀ  Google ScholarĀ 

  49. Wang, R.-L. and Dekker, J. (1995) Weedy adaptation in Setaria spp. Pest. Biochem. Physiol. 51, 99ā€“116.

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Gray, J. A., Balke, N. E., and Stoltenberg, D. E. (1996) Increased glutathione conjugation of atrazine confers resistance in a Wisconsin velvetleaf (Abutilon theophrasti) biotype. Pest. Biochem. Physiol. 55, 157ā€“171.

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Plaisance, K. and Gronwald, J. (1999) Enhanced catalytic constant for glutathiones-transferase (atrazine) activity in an atrazine-resistant Abutilon theophrasti biotype. Pest. Biochem. Physiol. 63, 34ā€“49.

    ArticleĀ  CASĀ  Google ScholarĀ 

  52. Crayford, J. and Hutson, D. (1972) The metabolism of the herbicide, 2-chloro-4-(ethylamino)-6-(1-cyano-1-methylethylamino)-s-triazine in the rat. Pest. Biochem. Physiol. 2, 295ā€“307.

    ArticleĀ  CASĀ  Google ScholarĀ 

  53. Chaudhry, Q., Schrƶder, P., Werck-Reichhart, D., Grajek, W., and Mareck, R. (2002) Prospects and limitations of phytoremediation for the removal of persistant pesticides in the environment. Environ. Sci. Pollut. Res. 9, 4ā€“17.

    ArticleĀ  CASĀ  Google ScholarĀ 

  54. US Enviromental Protection Agency (2002) The Grouping of a Series of Triazine Pesticides Based on a Common Mechanism of Toxicity. US EPA Office of Pesticide Programs: Health Effects Division.

    Google ScholarĀ 

  55. Oh, S. M., Shim, S. H., and Chung, K. H. (2003) Antioestrogenic action of atrazine and its major metabolites in vitro. J. Health Sci. 49, 65ā€“71.

    ArticleĀ  CASĀ  Google ScholarĀ 

  56. Ryan, G. (1970) Resistance of common groundsel to simazine and atrazine. Weed Sci. 18, 614ā€“618.

    CASĀ  Google ScholarĀ 

  57. Souza Machado, V., Bandeen, J., Stephenson, G., and Jensen, K. (1977) Differential atrazine interference with the Hill reaction of isolated chloroplasts from Chenopodium album biotypes. Weed Res. 17, 407ā€“413.

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Scalla, R. (1990) Obtention de plantes rĆ©sistantes aux herbicides. In: Les Herbicides, Mode dā€™Action et Principes dā€™Utilisation, INRA Editions, Paris, France, P 450.

    Google ScholarĀ 

  59. Le Baron, H. and Gressel, J. (1982) Herbicide Resistance in Plants. Wiley J and Sons Inc., New York, NY.

    Google ScholarĀ 

  60. Adams, R., Zhong, M., Turuspekov, Y., Dafforn, M., and Veldkamp, J. (1998) DNA fingerprintings reveals clonal nature of Vetiveria zizanioides (L.) Nash, Gramineae and sources of potential new germplasm. Molecular Ecol. 7, 813ā€“818.

    ArticleĀ  Google ScholarĀ 

  61. Zuloaga, F., Morrone, O., Davidse, G., et al. (2003) Catalogue of New World Grasses (Poaceae): III. Subfamilies Panicoideae, Aristidoideae, Arundinoideae, and Danthonioideae. Contr. U.S. Natl. Herb. 46, 1ā€“662.

    Google ScholarĀ 

  62. Bertea, C. M. and Camusso, W. (2002) Anatomy, biochemistry and physiology. In: Vetiveria, (Maffei, M., ed.), Taylor and Francis, London and New York, pp. 19ā€“43.

    Google ScholarĀ 

  63. Leupin, R. E. (2001) Vetiveria zizanioides: an approach to obtain essential oil variants via tissue cell culture. PhD thesis, ETH, ZĆ¼rich, Switzerland.

    Google ScholarĀ 

  64. National Research Council (1993) Vetiver Grass. A Thin Line Against Erosion. National Academy Press, Washington, DC.

    Google ScholarĀ 

  65. Dalton, P., Smith, R., and Truong, P. (1996) Vetiver grass hedges for erosion control on a cropped flood plain: hedge hydraulic. Agric. Water Manag. 31, 91ā€“104.

    ArticleĀ  Google ScholarĀ 

  66. Marcacci, S. (2004) A phytoremediation approach to remove pesticides (atrazine and lindane) from contaminated environment. PhD thesis, EPFL, Lausanne, Switzerland.

    Google ScholarĀ 

  67. Anhalt, J. C., Arthur, E. L., Todd, A. A., and Coats, J. R. (2000) Degradation of atrazine, metolachlor, and pendimethalin in pesticide-contaminated soils: effects of aged residues on soil respiration and plant survival. J. Environ. Sci. Health B B35,417ā€“438.

    Google ScholarĀ 

  68. Arthur, E. L., Perkovich, B. S., Anderson, T. A., and Coats, J. R. (1999) Degradation of an atrazine and metolachlor herbicide mixture in pesticide-contaminated soils from two agrochemical dealerships in Iowa. Water, Air, Soil Pollut. 119, 75ā€“90.

    ArticleĀ  Google ScholarĀ 

  69. Grigg, B. C., Bishoff, M., and Turco, R. F. (1997) Cocontaminant effects on degradation of triazine herbicides by a mixed microbial culture. J. Agric. Food Chem. 45, 995ā€“1000.

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Thurman, E. and Meyer, M. (1996) Herbicide metabolites in surface water and groundwater: introduction and overview. In: Herbicide Metabolites in Surface Water and Groundwater, (Meyer, M. and Thurman, E., eds.), American Chemical Society, Washington, DC, pp. 1ā€“15.

    ChapterĀ  Google ScholarĀ 

  71. Keller, K. E. and Weber, J. B. (1995) Mobility and dissipation of 14C-labeled atrazine, metolachlor, and primisulfuron in undisturbed field lysimeters of a coastal plain. J. Agric. Food Chem. 43, 1076ā€“1086.

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. Radosevich, M., Traina, S. J., and Tuovinen, O. H. (1996) Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research farm. Biodegrad. 7, 137ā€“149.

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Zargorc-Koncan, J. (1996) Effects of atrazine and alachlor on self-purification processes in receiving streams. Water Sci. Technol. 33, 181ā€“187.

    Google ScholarĀ 

  74. Tissut, M., Arnaud, L., Nurit, F., and Ravanel, P. (1991) PrĆ©sence des herbicides dans les eaux. Relations avec leur mode dā€™action. Eau, Agric. Environ. 30, 157ā€“162.

    Google ScholarĀ 

  75. Businelli, M., Marini, M., Businelli, D., and Ggliotti, G. (2000) Transport to ground-water of six commonly used herbicides: a prediction for two Italian scenarios. Pest Manag. Sci. 56, 181ā€“188.

    ArticleĀ  CASĀ  Google ScholarĀ 

  76. Wilson, C. P., Whitwell, T., and Klaine, S. J. (1999) Phytotoxicity, uptake, and distribution of 14C simazine in Canna hybrida ā€œYellow King Humbertā€. Environ. Toxicol. Chem. 18, 1462ā€“1468.

    CASĀ  Google ScholarĀ 

  77. Jablonkai, I. and Hatzios, K. (1993) In vitro conjugation of chloroacetanilide herbicides and atrazine with thiols and contribution of nonenzymatic conjugation to their glutathione-mediated metabolism in corn. J. Agric. Food Chem. 41, 1736ā€“1742.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Marcacci, S., SchwitzguƩbel, JP. (2007). Using Plant Phylogeny to Predict Detoxification of Triazine Herbicides. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics