Immobilization of Enzymes and Cells

Volume 22 of the series Methods in Biotechnology™ pp 65-76

Practical Protocols for Lipase Immobilization Via Sol-Gel Techniques

  • Manfred T. ReetzAffiliated withMax-Planck-Institut für Kohlenforschung

* Final gross prices may vary according to local VAT.

Get Access


Lipases can be efficiently entrapped in the pores of hydrophobic silicates by a simple and cheap sol-gel process in which a mixture of an alkylsilane [RSi(OCH3)3 and Si(OCH3)4] is hydrolyzed under basic conditions in the presence of the enzyme. Additives such as isopropanol, polyvinyl alcohol, cyclodextrins, or surfactants enhance the efficiency of this type of lipase immobilization. The main area of application of these heterogeneous biocatalysts concerns esterification or transesterification in organic solvents, ionic liquids, or supercritical carbon dioxide. Rate enhancements (relative to the traditional use of lipase powders) of several orders of magnitude have been observed, in addition to higher thermal stability. The lipase immobilizates are particularly useful in the kinetic resolution of chiral esters, enantioselectivity often being higher than what is observed when using the commercial forms of these lipases (powder or classical immobilizates). Thus, because of the low price of sol-gel entrapment, the excellent performance of the lipase immobilizates, and the ready recyclability, this method is industrially viable.

Key Words

Lipases sol-gel immobilization esterification transesterification thermal stability kinetic resolution enantioselectivity recyclability