Practical Protocols for Lipase Immobilization Via Sol-Gel Techniques

  • Manfred T. Reetz
Part of the Methods in Biotechnology™ book series (MIBT, volume 22)


Lipases can be efficiently entrapped in the pores of hydrophobic silicates by a simple and cheap sol-gel process in which a mixture of an alkylsilane [RSi(OCH3)3 and Si(OCH3)4] is hydrolyzed under basic conditions in the presence of the enzyme. Additives such as isopropanol, polyvinyl alcohol, cyclodextrins, or surfactants enhance the efficiency of this type of lipase immobilization. The main area of application of these heterogeneous biocatalysts concerns esterification or transesterification in organic solvents, ionic liquids, or supercritical carbon dioxide. Rate enhancements (relative to the traditional use of lipase powders) of several orders of magnitude have been observed, in addition to higher thermal stability. The lipase immobilizates are particularly useful in the kinetic resolution of chiral esters, enantioselectivity often being higher than what is observed when using the commercial forms of these lipases (powder or classical immobilizates). Thus, because of the low price of sol-gel entrapment, the excellent performance of the lipase immobilizates, and the ready recyclability, this method is industrially viable.

Key Words

Lipases sol-gel immobilization esterification transesterification thermal stability kinetic resolution enantioselectivity recyclability 


  1. 1.
    Faber K. (1997) Biotransformations in Organic Chemistry, 3rd edition, Springer Berlin.Google Scholar
  2. 2.
    Drauz K. and Waldmann H. (2002) Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, Vol. I–III, VCH Weinheim.CrossRefGoogle Scholar
  3. 3.
    Klibanov A. M. (2001) Improving enzymes by using them in organic solvents. Nature 409, 241–246.CrossRefGoogle Scholar
  4. 4.
    Schmid R. D. and Verger R. (1998) Lipases: interfacial enzymes with attractive applications. Angew. Chem. 110, 1694–1720; Angew. Chem. Int. Ed. 37, 1608–1633.CrossRefGoogle Scholar
  5. 5.
    Villeneuve P., Muderhwa J. M., Graille J., and Haas M. J. (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B: Enzym. 9, 113–148.CrossRefGoogle Scholar
  6. 6.
    Reetz M. T. (2002) Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6, 145–150.CrossRefGoogle Scholar
  7. 7.
    Brzozowski A. M., Derewenda U., Derewenda Z. S., et al. (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature (London) 351, 491–494.CrossRefGoogle Scholar
  8. 8.
    Van Tilbeurgh H., Egloff M.-P., Martinez C., Rugani N., Verger R. and Cambillau C. (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature (London) 362, 814–820.CrossRefGoogle Scholar
  9. 9.
    Avnir D., Braun S., Lev O., and Ottolenghi M. (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater. 6, 1605–1614.CrossRefGoogle Scholar
  10. 10.
    Johnson P. and Whateley T. L. (1971) Use of polymerizing silica gel systems for immobilization of trypsin. J. Colloid Interface Sci. 37, 557–563.CrossRefGoogle Scholar
  11. 11.
    Glad M., Norrlöw O., Sellergren B., Siegbahn N., and Mosbach K. (1985) Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J. Chromatogr. 347, 11–23.CrossRefGoogle Scholar
  12. 12.
    Avnir D. (1995) Organic chemistry within ceramic matrixes: Doped sol-gel materials. Acc. Chem. Res. 28, 328–334.CrossRefGoogle Scholar
  13. 13.
    Livage J. (1996) Bioactivity in sol-gel glasses. C. R. Acad. Sci., Ser. IIb: Mec., Phys. Chim., Astron. 322, 417–427.Google Scholar
  14. 14.
    Gill I. (2001) Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem. Mater. 13, 3404–3421.CrossRefGoogle Scholar
  15. 15.
    Hench L. L. and West J. K. (1990) The sol-del process. Chem. Rev. 90, 33–72.CrossRefGoogle Scholar
  16. 16.
    Brinker C. J. and Scherer G. W. (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press Boston.Google Scholar
  17. 17.
    Reetz M. T., Zonta A., and Simpelkamp J. (1995) Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol-gel materials. Angew. Chem. 107, 373–376; Angew. Chem., Int. Ed. Engl. 34, 301–303.CrossRefGoogle Scholar
  18. 18.
    Reetz M. T., Zonta A., and Simpelkamp J. (1996) Efficient immoblization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol. Bioeng. 49, 527–534.CrossRefGoogle Scholar
  19. 19.
    Reetz M. T., Zonta A., Simpelkamp J., and Könen W. (1996) In situ fixation of lipase-containing hydrophobic sol-gel materials on sintered glass—highly efficient heterogeneous biocatalysts. Chem. Commun. (Cambridge, UK), 1397–1398.Google Scholar
  20. 20.
    Reetz M. T., Zonta A., Simpelkamp J., Rufinska A., and Tesche B. (1996) Characterization of hydrophobic sol-gel materials containing entrapped lipases. J. Sol-Gel Sci. Technol. 7, 35–43.CrossRefGoogle Scholar
  21. 21.
    Reetz M. T. (1997) Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv. Mater. (Weinheim, Ger.) 9 943–954.CrossRefGoogle Scholar
  22. 22.
    Reetz M. T., Wenkel R., and Avnir D. (2000) Entrapment of lipases in hydrophobic sol-gel-materials: efficient heterogeneous biocatalysts in aqueous medium. Synthesis 781–783.Google Scholar
  23. 23.
    Reetz M. T., Zonta A., Vijayakrishnan V., and Schimossek K. (1998) Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials: magnetic separation of heterogeneous biocatalysts. J. Mol. Catal. A: Chem. 134, 251–258.CrossRefGoogle Scholar
  24. 24.
    Pierre M., Buisson P., Fache F., and Pierre A. (2000) Influence of the drying technique of silica gels on the enzymatic activity of encapsulated lipase. Biocatal. Biotransform. 18, 237–251.CrossRefGoogle Scholar
  25. 25.
    Buisson P., Hernandez C., Pierre M., and Pierre A. C. (2001) Encapsulation oflipases in aerogels. J. Non-Cryst. Solids 285, 295–302.CrossRefGoogle Scholar
  26. 26.
    Reetz M. T., Tielmann P., Wiesenhöfer W., Könen W., and Zonta A. (2003) Second generation sol-gel encapsulated lipases: Robust heterogeneous biocatalysts. Adv. Synth. Catal. 345, 717–728.CrossRefGoogle Scholar
  27. 27.
    Reinhoudt D. N., Eendebak A. M., Nijenhuis W. F., Verboom W., Kloosterman M., and Schoemaker H. E. (1989) The effect of crown ethers on enzyme-catalyzed reactions in organic solvents. J. Chem. Soc. Chem. Commun. 399–400.Google Scholar
  28. 28.
    Engbersen J. F. J., Broos J., Verboom W., and Reinhoudt D. N. (1996) Effects of crown ethers and small amounts of cosolvent on the activity and enantioselectivity of a-chymotrypsin in organic solvents. Pure Appl. Chem. 68, 2171–2178.CrossRefGoogle Scholar
  29. 29.
    van Unen D.-J., Engbersen J. F. J., and Reinhoudt D. N. (2002) Why do crown ethers activate enzymes in organic solvents? Biotechnol. Bioeng. 77, 248–255.CrossRefGoogle Scholar
  30. 30.
    Griebenow K., Laureano Y. D., Santos A. M., et al. (1999) Improved enzyme activity and enantioselectivity in organic solvents by methyl-β-cyclodextrin. J. Am. Chem. Soc. 121, 8157–8163.CrossRefGoogle Scholar
  31. 31.
    Santos A. M., Clemente I. M., Barletta G., and Griebenow K. (1999) Activation of serine protease subtilisin Carlsberg in organic solvents: combined effect of methl-β-cyclodextrin and water. Biotechnol. Lett. 21, 1113–1118.CrossRefGoogle Scholar
  32. 32.
    Khmelnitsky Y. L., Welch S. H., Clark D. S., and Dordick J. S. (1994) Salts dramatically enhance activity of enzymes suspended in organic solvents. J. Am. Chem. Soc. 116, 2647–2648.CrossRefGoogle Scholar
  33. 33.
    Altreuter D. H., Dordick J. S., and Clark D. S. (2002) Nonaqueous biocatalytic synthesis of new cyclotoxic doxorubicin derivatives: exploiting unexpected differences in the regioselectivity of salt-activated and solubilized subtilisin. J. Am. Chem. Soc. 124, 1871–1876.CrossRefGoogle Scholar
  34. 34.
    Liu Y.-Y., Xu J.-H., and Hu Y. (2000) Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. J. Mol. Catal. B: Enzym. 10, 523–529.CrossRefGoogle Scholar
  35. 35.
    Colton I. J., Ahmed S. N., and Kazlauskas R. J. (1995) A 2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. J. Org. Chem. 60, 212–21CrossRefGoogle Scholar
  36. 36.
    Zhu K., Jutila A., Tuominen E. K. J., and Kinnunen P. K. J. (2001) Effects of ipropanol on the structural dynamics of Thermomyces lanuginosa lipase revealed by tryptophan fluorescence. Protein Sci. bd10}, 339–351.CrossRefGoogle Scholar
  37. 37.
    Cipiciani A. and Bellezza F. (2002) Primary allenic alcohols of high optical purity via lipase catalyzed resolution. J. Mol. Catal. B: Enzym. 17, 261–266.CrossRefGoogle Scholar
  38. 38.
    Khalaf N., Govardhan C. P., Lalonde J. J., Persichetti R. A., Wang Y.-F., and Margolin A. L. (1996) Cross-linked enzyme crystals as high active catalysts in organic solvents. J. Am. Chem. Soc. 118, 5494–5495.CrossRefGoogle Scholar
  39. 39.
    Badjic J. D., Kadnikova E. N., and Kostic N. M. (2001) Enantioselective aminolysis of an a-chloroester catalyzed by Candida cylindracea lipase encapsulated in sol-gel silica glass. Org. Lett. 3, 2025–2028.CrossRefGoogle Scholar
  40. 40.
    Furukawa S.-Y. and Kawakami K. (1998) Characterization of Candida rugosa lipase entrapped into organically modified silicates in esterification of menthol with butyric acid. J. Ferment. Bioeng. 85, 240–242.CrossRefGoogle Scholar
  41. 41.
    Pfau R. and Kunz H. (1999) Selectively deprotectable carbohydrates based on regioselective enzymatic reactions. Synlett 1817–1819.Google Scholar
  42. 42.
    Gill I., Pastor E., and Ballesteros A. (1999) Lipase-silicone biocomposites: Efficient and versatile immobilized biocatalysts. J. Am. Chem. Soc. 121, 9487–9496.CrossRefGoogle Scholar
  43. 43.
    Ragheb A., Brook M. A., and Hrynyk M. (2003) Highly activated, silicone entrapped, lipase. Chem. Commun. (Cambridge, UK) Issue 18, 2314–2315.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Manfred T. Reetz
    • 1
  1. 1.Max-Planck-Institut für KohlenforschungMülheim/RuhrGermany

Personalised recommendations