Skip to main content

Purification, Immobilization, Hyperactivation, and Stabilization of Lipases by Selective Adsorption on Hydrophobic Supports

  • Protocol
Book cover Immobilization of Enzymes and Cells

Abstract

Immobilization of lipases on hydrophobic supports at low ionic strength permits one- step purification, immobilization, hyperactivation, and stabilization of most lipases. This selective adsorption occurs because the hydrophobic surface of the supports is able to promote the interfacial activation of the lipases, yielding enzyme preparations having the open form of the lipases very strongly adsorbed on these hydrophobic supports. At low ionic strength, only proteins having large hydrophobic pockets may become adsorbed on the hydrophobic support, and the only soluble proteins are lipases, which in closed form are fairly hydrophilic, but in open form expose a very hydrophobic pocket. The result- ing biocatalysts are therefore hyperactivated, at least with hydrophobic and small substrates (because all the enzyme molecules have the open form). Moreover, the stabilization of the open form of the lipases permits very highly stabilized enzyme preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Undurraga D., Markovits A., and Erazo S. (2001) Cocoa butter equivalent through enzymatic interesterification of palm oil midfraction. Process Biochem. 36, 933–939.

    Article  CAS  Google Scholar 

  2. Plou J. F., Barandiaran M., Calvo M. V., Ballesteros A., and Pastor E. (1996) High yield production of mono and dioleylglycerol by lipase catalyzed hydrolysis of triolein. Enzyme Microb. Technol. 18, 66–71.

    Article  CAS  Google Scholar 

  3. Jaeger K.E. and Reetz T.M. (1998) Microbial lipases from versatile tools for biotechnology. Trends Biotechnol. 16, 396–403.

    Article  CAS  Google Scholar 

  4. Watanabe Y., Miyawaki Y., Adachi S., Nakanishi K., and Matsuno R. (2001) Continuous production of acyl mannoses by immobilized lipase using a packedbed reactor and their surfactant properties. Biochem. Eng. J. 8, 213–216.

    Article  CAS  Google Scholar 

  5. Wong C. H. and Whitesides G. M. (1994) Enzymes in Synthetic Organic Chemistry, Tetrahedron Organic Chemistry Series, vol. 12, Pergamon Press, Oxford, UK.

    Google Scholar 

  6. Kazlauskas R. J. and Bornscheuer U. T. (1998) Biotransformations with Lipases in Biotechnology. 68–87.

    Google Scholar 

  7. Schmid R.D. and Verger R. (1998) Lipases: interfacial enzymes with attractive applications. Angew. Chem., Int. Ed. 37, 1609–1633.

    Article  CAS  Google Scholar 

  8. Palomo J. M., Fernandez-Lorente G., Mateo C., Fuentes M., Fernandez-Lafuente R., and Guisán J. M. (2002) Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering: kinetic resolution of (fx)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron: Asymmetry. 13, 1337–1345.

    Article  CAS  Google Scholar 

  9. Palomo J. M., Fernandez-Lorente G., Rua M. L., Guisán J. M., and Fernandez-Lafuente R. (2003) Evaluation of the lipase from Bacillus thermocatenulatus as an enantioselective biocatalyst. Tetrahedron: Asymmetry 14, 3679–3687.

    Article  CAS  Google Scholar 

  10. Palomo J. M., Mateo C., Fernández-Lorente G., et al. (2003). Chiral resolution of (S)-5(+)-substituted-6-(5-chloropyridin-2-yl)-7-oxo-5,6-dihydropyrrolo[3,4b]pyrazine derivatives-precursors of (S)-(+)-Zopiclone, catalyzed by immobilized C andida antarctica B lipase in aqueous media. Tetrahedron: Asymmetry 14, 429–438.

    Article  CAS  Google Scholar 

  11. Brady L., Brzozowski A. M., Derewenda Z. S., et al. (1990) A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature 343, 767–770.

    Article  CAS  Google Scholar 

  12. Brzozowski A. M., Derewenda U., Derewenda Z. S., et al. (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351, 491–494.

    Article  CAS  Google Scholar 

  13. Sarda L. and Desnuelle P. (1958) Action de la lipase pancreatique sur les esteres en emulsion. Biochim. Biophys. Acta. 30, 513–521.

    Article  CAS  Google Scholar 

  14. Ghosh D., Wawrzak Z., Pletnev V. Z., et al. (1995) Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. Structure 3, 279–288.

    Article  CAS  Google Scholar 

  15. García-Alles L. F. and Gotor V. (1998) Lipase-catalyzed transesterifcation in organic media: solvent effects on equilibrium and individual rate constants. Biotechnol. Bioeng. 59, 684.694.

    Google Scholar 

  16. Bastida A., Sabuquillo P., Armisen P., Fernández-Lafuente R., Huguet J., and Guisán, J. M. (1998) A single step purification, immobilization and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol. Bioeng. 58, 486.493.

    Article  Google Scholar 

  17. Palomo J. M., Muñoz G., Fernández-Lorente G., Mateo C., Fernández-Lafuente R., and Guisán J. M. (2002) Interfacial adsorption of lipases on very hydrophobic support (Octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B: Enzym. 19–20, 279–286.

    Article  Google Scholar 

  18. Miled N., Beisson F., de Caro J., de Caro A., Arondel V., and Verger R. (2001) Interfacial catalysis by lipases. J. Mol. Catal. B: Enzym. 11, 65–171.

    Article  Google Scholar 

  19. Palomo J. M., Segura R. L., Fernández-Lorente G., et al. (2004) Purification, Immobilization and stabilization of a lipase from Bacillus thermocatenulatus. Biotechnol. Prog. 20, 630–635.

    Article  CAS  Google Scholar 

  20. Sabuquillo P., Reina J., Fernández-Lorente G., Guisán J. M., and Fernández-Lafuente R. (1998) Interfacial affinity chromatography of lipases: separation of different fractions by selective adsorption on supports activated with hydrophobic groups. Biochim. Biophys. Acta. 1388, 337–348.

    Article  CAS  Google Scholar 

  21. Guisán J. M. (1988) Aldehyde gels as activated support for immobilization-stabilization of enzymes. Enzyme Microb. Technol. 10, 375–382.

    Article  Google Scholar 

  22. Fernández-Lafuente R., Rodriguez V., and Guisan J. M. (1998) The coimmobilization of D-aminoacid oxidase and catalase enables the quantitative transformation of D-amino acids (phenylalanine) into α-ceto acids (phenylpyruvic acid). Enzyme Microb. Technol. 23, 28.33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Palomo, J.M. et al. (2006). Purification, Immobilization, Hyperactivation, and Stabilization of Lipases by Selective Adsorption on Hydrophobic Supports. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnologyâ„¢, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics