Skip to main content

Microtransplantation of Neurotransmitter Receptors From Cells to Xenopus Oocyte Membranes

New Procedure for Ion Channel Studies

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

The Xenopus oocyte is largely used as a cell expression system for studying both structure and function of transmitter receptors and ion channels. Messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional ion channels. A new method was developed further to transplant neurotransmitter receptors from human brain or cultured cell lines to the membrane of Xenopus oocytes. This method represents a modification of the method used many years ago of injecting into oocytes membrane vesicles from Torpedo electroplaques, yielding the expression of functional Torpedo acetylcholine receptors. We describe this approach by extracting membrane vesicles from human hippocampus or temporal neocortex and from mammalian cell lines stably expressing glutamate or neuronal nicotinic receptors. Because the human neurotransmitter receptors are “microtransplanted” with their native cell membranes, this method extends the usefulness of Xenopus oocytes as an expression system for addressing issues in many fields, including channelopathies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gundersen, C. B., Miledi, R., and Parker, I. (1983) Voltage-operated channels induced by foreign messenger RNA in Xenopus oocytes. Proc. R. Soc. Lond. BBiol. Sci. 220, 131–140

    Article  CAS  Google Scholar 

  2. Gundersen, C. B., Miledi, R., and Parker, I. (1984) Messenger RNA from human brain induces drug-and voltage-operated channels in Xenopus oocytes. Nature 308, 421–424.

    Article  CAS  PubMed  Google Scholar 

  3. Miledi, R., Parler, I., and Sumikawa, K. (1989) Transplanting receptors from brain into oocytes, in Fidia Award Lectures, Vol. 3 (Smith, J., ed.), Raven Press, New York, pp. 57–90.

    Google Scholar 

  4. Arellano, R. O., Woodward, R. M., and Miledi, R. (1996) Ion channels and membrane receptors in follicle-enclosed Xenopus oocytes, in Ion Channels, Vol. 4 (Narahashi, T., ed.), Plenum Press, New York, pp. 203–259.

    Google Scholar 

  5. Bertrand D., Cooper, E., Valera, S., Rungger, D., and Ballivet, M. (1991) Electrophysiology of neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes following nuclear injection of genes or cDNAs, in Methods in Neurosciences, Vol. 4, edited by P. Michael Conn, Academic Press, NY, pp. 174–193.

    Google Scholar 

  6. Quick, M. W. and Lester, H. A. (1994) Methods for expression of excitability proteins in Xenopus oocytes, in Methods in Neurosciences, Vol. 19, edited by P. Michael Conn, Academic Press, NY, pp. 261–279.

    Google Scholar 

  7. Palma, E., Mileo, A. M., Eusebi, F., and Miledi, R. (1996) Threonine-for-leucine mutation within domain M2 of the neuronal α7 nicotinic receptor converts 5-hydroxytryptamine from antagonist to agonist. Proc. Natl. Acad. Sci. USA 93, 11,231–11,235.

    Article  CAS  PubMed  Google Scholar 

  8. Marsal, J., Tigyi, G., and Miledi, R. (1995) Incorporation of acetylcholine receptors and Cl-channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc. Natl. Acad. Sci. USA 92, 5224–5228.

    Article  CAS  PubMed  Google Scholar 

  9. Morales, A., Aleu, J., Ivorra, I., Ferragut, J. A., Gonzalez-Ros, J. M., and Miledi, R. (1995) Incorporation of reconstituted acetylcholine receptors from Torpedo into Xenopus oocyte membrane. Proc. Natl. Acad. Sci. USA 92, 8468–8472.

    Article  CAS  PubMed  Google Scholar 

  10. Miledi, R., Eusebi, F., Martinez-Torres, A., Palma, E., and Trettel, F. (2002) Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc. Natl. Acad. Sci. USA 99, 13,238–13,242.

    Article  CAS  PubMed  Google Scholar 

  11. Palma, E., Trettel, F., Fucile, S., Renzi, M., Miledi R., and Eusebi, F. (2003) Microtransplantation of membranes from cultured cells to Xenopus oocytes: a method to study neurotransmitter receptors embedded in native lipids, Proc. Natl. Acad. Sci. USA 100, 2896–2900.

    Article  CAS  PubMed  Google Scholar 

  12. Barnard. E. A., Miledi, R., and Sumikawa, K. (1982) Transplantation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond. B Biol. Sci. 215, 241–246.

    Article  CAS  PubMed  Google Scholar 

  13. Sumikawa, K., Parker, I., and Miledi, R. (1984) Partial purification and functional expression. Proc. Natl. head. Sci. USA 81, 7994–7998.

    Article  CAS  Google Scholar 

  14. Smart, T. G. and Krishek, B. J. (1995) Xenopus oocyte microinjection and ion-channel expression, in Patch-Clamp Applications and Protocols (Boulton, A. A., Baker, G. B., and Walz, W., eds.), Humana Press, Totowa, NJ.

    Google Scholar 

  15. Miledi, R. (1982) A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc. R. Soc. Lond. B Biol. Sci. 215, 491–497.

    Article  CAS  PubMed  Google Scholar 

  16. Miledi, R. and Woodward, R. M. (1989) Effects of defolliculation on membrane current responses of Xenopus oocytes. J. Physiol. 416, 601–621.

    CAS  PubMed  Google Scholar 

  17. Palma, E., Esposito, V., Mileo, A. M., et al. (2002) Expression of human temporal lobe neurotransmitter receptors in Xenopus oocytes: an innovative approach to study epilepsy. Proc. Natl. Acad. Sci. USA 99, 15,078–15,083.

    Article  CAS  PubMed  Google Scholar 

  18. Kusano, K., Miledi, R., and Stinnakre, J. (1982) Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J. Physiol. 328, 143–170.

    CAS  PubMed  Google Scholar 

  19. Miledi, R. (1980) Intracellular calcium and desensitization of acetylcholine receptors. Proc. R. Soc. Lond. B Biol. Sci. 209. 447–452.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Miledi, R., Palma, E., Eusebi, F. (2006). Microtransplantation of Neurotransmitter Receptors From Cells to Xenopus Oocyte Membranes. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics