Skip to main content

Xenopus Egg Extracts

A Model System to Study Proprotein Convertases

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

The Xenopus egg extract translation system has proved an ideal tool with which to study the biosynthesis of the prohormone convertases. It provides a robust coupled translation/translocation system capable of efficient translocation of any protein containing an N-terminal signal sequence into the lumen of its microsomal membranes, with cotranslational cleavage of the signal peptide. Its main advantage over rival in vitro translation systems is that it will also carry out posttranslational modification of proteins, such as N-glycosylation, and, in the case of the proprotein convertases, support autocatalytic proregion removal. The egg extract also contains an endogenous, acidic pH optimum enzyme activity, suggestive of a proprotein convertase, that can undertake limited proteolysis of precursors containing multibasic processing sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steiner, D. F. (1998) The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39.

    Article  CAS  PubMed  Google Scholar 

  2. Roebroek, A. J. M., Schalken, J. A., Leunissen, J. A. M., Onnekink, C, Bloemers, H. P. J., and Van de Ven, W. J. M. (1986) Evolutionary conserved close linkage of the c-fps/fps proto-oncogene and genetic sequences encoding a receptor-like protein. EMBO J. 5, 2197–2202.

    CAS  PubMed  Google Scholar 

  3. Van de Ven, W. J., Creemers, J. W., and Roebroek, A. J. (1991) Furin: the prototype mammalian subtilisin-like proprotein-processing enzyme. Endoproteolytic cleavage at paired basic residues of proproteins of the eukaryotic secretory pathway. Enzyme 45, 257–270.

    PubMed  Google Scholar 

  4. Seidah, N. G., Gaspar, L., Mion, P., Marcinkiewicz, M., Mbikay, M., and Chretien, M. (1990) cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 9, 415–424.

    Article  CAS  PubMed  Google Scholar 

  5. Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J., and Steiner, D. F. (1991) Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc. Natl. Acad. Sci. USA 88, 340–344.

    Article  CAS  PubMed  Google Scholar 

  6. Smeekens, S. P. and Steiner, D. F. 1990. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem. 265, 2997–3000.

    CAS  PubMed  Google Scholar 

  7. Seidah, N. G., Marcinkiewicz, M, Benjannet, S., et al. (1991) Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol. Endocrinol. 5, 111–122.

    Article  CAS  PubMed  Google Scholar 

  8. Kiefer, M. C, Tucker, J. E., Joh, R., Landsberg, K. E., Saltman, D., and Barr, P. J. (1991) Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol. 10, 757–769.

    Article  CAS  PubMed  Google Scholar 

  9. Nakayama, K., Kim, W., Torii, S., et al. (1992) Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. J. Biol. Chem. 267, 5897–5900.

    CAS  PubMed  Google Scholar 

  10. Lusson, J., Vieau, D., Hamelin, J., Day, R., Chretien, M., and Seidah, N. G. (1993) cDNA structure of the mouse and rat subtilisin/kexin-like PC candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc. Natl. Acad. Sci. USA 90, 6691–6695.

    Article  CAS  PubMed  Google Scholar 

  11. Nakagawa, T., Hosaka, M., Torii, S., Watanabe, T., Murakami, K., and Nakayama, K. (1993) Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: its striking structural similarity to PACE4. J. Biochem. 113, 132–135.

    CAS  PubMed  Google Scholar 

  12. Bruzzaniti, A., Goodge, K., Jay, P., et al. (1996) PCS, a new member of the convertase family. Biochem. J. 314, 727–731.

    CAS  PubMed  Google Scholar 

  13. Meerabux, J., Yaspo, M. L., Roebroek, A. J., Van de Ven, W. J., Lister, T. A., and Young, B. D. 1996. A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas. Cancer Res. 56, 448–454.

    CAS  PubMed  Google Scholar 

  14. Seidah, N. G., Hamelin, J., Mamarbachi, A., et al. (1996) cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc. Natl. Acad. Sci. USA 93, 3388–3393.

    Article  CAS  PubMed  Google Scholar 

  15. Martens, G. J., Braks, J. A., Eib, D. W., Zhou, Y., and Lindberg, I. (1994) The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc. Natl. Acad. Sci. USA 91, 5784–5787.

    Article  CAS  PubMed  Google Scholar 

  16. Braks, J. A. and Martens, G. J. (1994) 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78, 263–273.

    Article  CAS  PubMed  Google Scholar 

  17. Krieg, P. A. and Melton, D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070.

    Article  CAS  PubMed  Google Scholar 

  18. Matthews, G. and Colman, A. (1991) A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs. Nucleic Acids Res. 19, 6405–6412.

    Article  CAS  PubMed  Google Scholar 

  19. Lau, J. T., Welply, J. K., Shenbagamartin, P., Naider, F., and Lennarz, W. J. (1983) Substrate recognition by oligosaccharyl transferase. Inhibition of co-translational glycosylation by acceptor peptides. J. Biol. Chem. 258, 15,255–15,260.

    CAS  PubMed  Google Scholar 

  20. Scougall, K., Taylor, N. A., Jermany, J. L., Docherty, K., and Shennan, K. I. J. (1998) Differences in the autocatalytic cleavage of pro-PC2 and pro-PC3 can be attributed to sequences within the propeptide and Asp(310) of pro-PC2. Biochem. J. 334, 531–537.

    CAS  PubMed  Google Scholar 

  21. Vindrola, O. and Lindberg, I. (1992) Biosynthesis of the prohormone convertase mPCl in AtT-20 cells. Mol. Endocrinol. 6, 1088–1092.

    Article  CAS  PubMed  Google Scholar 

  22. Matthews, G., Shennan, K. I., Seal, A. J., Taylor, N. A., Colman, A., and Docherty, K. (1994) Autocatalytic maturation of the prohormone convertase PC2. J. Biol. Chem. 269, 588–592.

    CAS  PubMed  Google Scholar 

  23. Paquet, L., Bergeron, F., Boudreault, A., et al. (1994) The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase. J. Biol. Chem. 269, 19,279–19,285.

    CAS  PubMed  Google Scholar 

  24. Korner, J., Chun, J., O’Bryan, L., and Axel, R. (1991) Prohormone processing in Xenopus oocytes: characterisation of cleavage signals and cleavage enzymes. Proc. Natl. Acad. Sci. USA 88, 11,393–11,397.

    Article  CAS  PubMed  Google Scholar 

  25. Blázquez, M. and Shennan, K. I. J. (2000) Basic mechanisms of secretion: sorting into the regulated secretory pathway. Biochem. Cell Biol. 78, 181–191.

    Article  PubMed  Google Scholar 

  26. Jan, G., Taylor, N. A., Scougall, K. T., Docherty, K., and Shennan, K. I. (1998) The propeptide of prohormone convertase PC2 acts as a transferable aggregation and membrane-association signal. Eur. J. Biochem. 257, 41–46.

    Article  CAS  PubMed  Google Scholar 

  27. Nakayama, K. (1997) Furin: a mammalian subtilisin/kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327, 625–635.

    CAS  PubMed  Google Scholar 

  28. Shennan, K. I., Taylor, N. A., and Docherty, K. (1994) Calcium-and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2. J. Biol. Chem. 269, 18,646–18,650.

    CAS  PubMed  Google Scholar 

  29. Blázquez, M., Docherty, K., and Shennan, K. I. J. (2001) Association of prohormone convertase PC3 with membrane lipid rafts. J. Mol. Endocrinol. 27, 107–116.

    Article  PubMed  Google Scholar 

  30. Arnaoutova, I., Smith, A. M., Coates, L. C, et al. (2003) The prohormone processing enzyme PC3 is a lipid raft-associated transmembrane protein. Biochemistry 42, 10,445–10,455.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sherman, K.I.J. (2006). Xenopus Egg Extracts. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics