Advertisement

Applications of Microscopy to Genetic Therapy of Cystic Fibrosis and Other Human Diseases

  • Thomas O. Moninger
  • Randy A. Nessler
  • Kenneth C. Moore
Part of the Methods in Molecular Biology™ book series (MIMB, volume 319)

Abstract

Gene therapy has become an extremely important and active field of biomedical research. Microscopy is an integral component of this effort. This chapter presents an overview of imaging techniques used in our facility in support of cystic fibrosis gene therapy research. Instrumentation used in these studies includes light and confocal microscopy, transmission electron microscopy, and scanning electron microscopy. Techniques outlined include negative staining, cryo-electron microscopy, three-dimentional reconstruction, enzyme cytochemistry, immunocytochemistry, and fluorescence imaging.

Key Words

Gene therapy gene transfer vectors light microscopy confocal microscopy electron microscopy cystic fibrosis 

References

  1. 1.
    Rich, D. P., Anderson, M. P., Gregory, R. J., et al. (1990) Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347, 358–363.PubMedCrossRefGoogle Scholar
  2. 2.
    Quinton. P. M. (1986) Missing Cl conductance in cystic fibrosis. Am. J. Physiol. 251, C649–C652.PubMedGoogle Scholar
  3. 3.
    Smith, J. J., Travis, S. M., Greenberg, E. P., and Welsh, M. J. (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236.PubMedCrossRefGoogle Scholar
  4. 4.
    Romling, U., Fiedler, B., Bosshammer, J., et al. (1994) Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J. Infect. Dis. 170, 1616–1621.PubMedGoogle Scholar
  5. 5.
    Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999) Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.PubMedCrossRefGoogle Scholar
  6. 6.
    Riordan, J. R., Rommens, J. M., Kerem, B. S., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.PubMedCrossRefGoogle Scholar
  7. 7.
    Karp, P. H., Moninger, T. O., Weber, S. P., et al. (2002) An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol. Biol. 188, 115–137.PubMedGoogle Scholar
  8. 8.
    Fasbender, A. J., Zabner, J., and Welsh, M. J. (1995) Optimization of cationic lipid-mediated gene transfer to airway epithelia. Am. J. Physiol. 269, L45–L51.PubMedGoogle Scholar
  9. 9.
    Fasbender, A. J., Marshall, J., Moninger, T. O., Grunst, T., Cheng, S., and Welsh, M. J. (1997) Effect of co-lipids in enhancing cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther. 4, 716–725.PubMedCrossRefGoogle Scholar
  10. 10.
    Fasbender, A. J., Zabner, J., Chillon, M., et al. (1997) Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J. Biol. Chem. 272, 6479–6489.PubMedCrossRefGoogle Scholar
  11. 11.
    Fasbender, A. J., Zabner, J., Zeiher, B. G., and Welsh, M. J. (1997) A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated airway epithelia. Gene Ther. 4, 1173–1180.PubMedCrossRefGoogle Scholar
  12. 12.
    Zabner, J., Couture, L. A., Gregory, R. J., Graham, S. M., Smith, A. E., and Welsh, M. J. (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75, 207–216.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, G., Zabner, J., Deering, C., et al (2000) Increasing epithelial junction permeability enhances gene transfer to airway epithelia In vivo. Am. J. Respir. Cell Mol. Biol. 22, 129–138.PubMedGoogle Scholar
  14. 14.
    Ostedgaard, L. S., Zabner, J., Vermeer, D. W., et al. (2002) CFTR with a partially deleted R domain corrects the cystic fibrosis chloride transport defect in human airway epithelia in vitro and in mouse nasal mucosa in vivo. Proc. Natl. Acad. Sci. USA 99, 3093–3098.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Thomas O. Moninger
    • 1
  • Randy A. Nessler
    • 2
  • Kenneth C. Moore
    • 3
  1. 1.Central Microscopy Research Facility and Department of Internal MedicineUniversity of IowaIowa City
  2. 2.Central Microscopy Research Facility and Department of PediatricsUniversity of IowaIowa City
  3. 3.Central Microscopy Research FacilityUniversity of IowaIowa City

Personalised recommendations