Quantitative Analysis of Atherosclerotic Lesion Composition in Mice

  • Marilyn P. Wadsworth
  • Burton E. Sobel
  • David J. Schneider
  • Wendy Tra
  • Hans van Hirtum
  • Douglas J. Taatjes
Part of the Methods in Molecular Biology™ book series (MIMB, volume 319)


Comparative quantitation has become an increasingly desirable tool in determining compositional differences of aortic plaque lesion in transgenically altered mice. To this end, methodology has been developed to identify lipid, cellularity, collagen, and elastin components using traditional bright-field microscopy, fluorescence, and polarized light microscopy, employing both confocal and wide-field imaging systems. Subsequent imaging processing and analysis on the digitally captured images reveals differences in compositional components as influenced by diet, age, and gender. This method can be expanded to employ a rich variety of histochemical and immunohistochemical staining protocols.

Key Words

Atherosclerotic plaques composition lesion quantitation lipid cellularity collagen fluorescence microscopy polarized light microscopy confocal scanning laser microscopy image analysis 


  1. 1.
    Oberholzer, M., Ostreicher, M., Christen, H., and Bruhlmann, M. (1996) Methods in quantitative image analysis. Histochem. Cell Biol. 105, 333–355.PubMedCrossRefGoogle Scholar
  2. 2.
    Taatjes, D. J., Wadsworth, M. P., Schneider, D. J., and Sobel, B. E. (2000) Improved quantitative characterization of atherosclerotic plaque composition with immunohistochemistry, confocal fluorescence microscopy, and computer-assisted image analysis. Histochem. Cell Biol. 113, 161–173.PubMedCrossRefGoogle Scholar
  3. 3.
    Wadsworth, M. P., Sobel, B. E., Schneider, D. J., and Taatjes, D. J. (2002) Delineation of the evolution of compositional changes in atheroma. Histochem. Cell Biol. 118, 59–68.PubMedGoogle Scholar
  4. 4.
    Taatjes, D. J., Schneider, D. J., Bovill, E. G., and Sobel, B. E. (2001) Microscopy-based imaging of the pathogenesis of cardiovascular disease. Microsc. Anal. 50, 21–23.Google Scholar
  5. 5.
    Falk, E. (1985) Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death: autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 71, 699–708.PubMedGoogle Scholar
  6. 6.
    Davies, M. J., Bland, M. J., Hangartner, W. R., Angelini, A., and Thomas, A. C. (1989) Factors influencing the presence of acute coronary thrombi in sudden ischemic death. Eur. Heart J. 10, 203–208.PubMedGoogle Scholar
  7. 7.
    Sobel, B. E. (1999) Increased plasminogen activator inhibitor-1 and vasculopathy: a reconcilable paradox. Circulation 99, 2496–2498.PubMedGoogle Scholar
  8. 8.
    Sobel, B. E. (1999) The potential influence of insulin and plasminogen activator inhibitor type 1 on the formation of vulnerable atherosclerotic plaques associated with type 2 diabetes. Proc. Assoc. Am. Physicians 111, 313–318.PubMedCrossRefGoogle Scholar
  9. 9.
    Newby, A. C., Libby, P., and van der Wal, A. C. (1999) Plaque instability—the real challenge for atherosclerosis research in the next decade? Cardiovasc. Res. 41, 321–322.PubMedCrossRefGoogle Scholar
  10. 10.
    Breslow, J. L. (1996) Mouse models of atherosclerosis. Science 272, 685–688.PubMedCrossRefGoogle Scholar
  11. 11.
    Warden, C. H., Hedrick, C. C., Qiao, J.-H., Castellani, L. W., and Lusis, A. J. (1993) Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science 261, 469–472.PubMedCrossRefGoogle Scholar
  12. 12.
    Paigen, B., Morrow, A., Holmes, P. A., Mitchell, D., and Williams, R. A. (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68, 231–240.PubMedCrossRefGoogle Scholar
  13. 13.
    Dolber, P. C. and Spach, M. S. (1993) Conventional and confocal fluorescence microscopy of collagen fibers in the heart. J. Histochem. Cytochem. 41, 465–469.PubMedGoogle Scholar
  14. 14.
    Junqueira, L. C. U., Bignolas, G., and Brentani, R. R. (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 11, 447–455.PubMedCrossRefGoogle Scholar
  15. 15.
    Lehr, H.-A., Mankoff, D. A., Corwin, D., Santeusanio, G., and Gown, A. M. (1997) Application of Photoshop-based image analysis for quantification of hormone receptor expression in breast cancer. J. Histochem. Cytochem. 45, 1559–1565.PubMedGoogle Scholar
  16. 16.
    Lehr, H.-A., van der Loos, C. M., Teeling, P., and Gown, A. M. (1999) Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. J. Histochem. Cytochem. 47, 119–125.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Marilyn P. Wadsworth
    • 1
  • Burton E. Sobel
    • 2
  • David J. Schneider
    • 2
  • Wendy Tra
    • 1
  • Hans van Hirtum
    • 1
  • Douglas J. Taatjes
    • 1
  1. 1.Department of Pathology, and Microscopy Imaging CenterUniversity of VermontBurlington
  2. 2.Department of MedicineUniversity of VermontBurlington

Personalised recommendations