Secretory Vesicle Swelling by Atomic Force Microscopy

  • Sang-Joon Cho
  • Bhanu P. Jena
Part of the Methods in Molecular Biology™ book series (MIMB, volume 319)


The swelling of secretory vesicles has been implicated in exocytosis, but the underlying mechanism of vesicle swelling remained unknown. Earlier studies from our laboratory demonstrated the association of the α-subunit of heterotrimeric GTP-binding protein G±i3 with zymogen granule membrane and implicated its involvement in vesicle swelling. Mas7, an active mastoparan analog known to stimulate Gi proteins, was found to stimulate the GTPase activity of isolated zymogen granules and cause swelling. Increase in vesicle size in the presence of GTP, NaF, and Mas7 were irreversible and found to be KCl sensitive. However, Ca2+ had no effect on zymogen granule size. Taken together, these results indicated that zymogen granules, the membrane-bound secretory vesicles in exocrine pancreas, swell in response to GTP mediated by a G±i3 protein. Subsequently, our studies demonstrated that the water channel aquaporin-1 (AQP1) is also present at the zymogen granule membrane and participates in rapid GTP-induced and G±i3-mediated vesicular water gating and swelling. Isolated zymogen granules exhibit low basal water permeability. However, exposure of granules to GTP results in a marked potentiation of water entry. Treatment of zymogen granules with the known water channel inhibitor Hg2+ is accompanied by a reversible loss in both the basal and GTP-stimulable water entry and vesicle swelling. Introduction of AQP1-specific antibody raised against the carboxy-terminal domain of AQP1 blocked GTP-stimulable swelling of vesicles. Our results demonstrate that AQP1 associated at the zymogen granule membrane is involved in basal GTP-induced and G±i3-mediated rapid gating of water into zymogen granules of the exocrine pancreas.

Key Words

Secretory vesicle AFM swelling 


  1. 1.
    Alvarez de Toledo, G., Fernandez-Chacon, R., and Fernandez, J. M. (1993) Release of secretory products during transient vesicle fusion. Nature 363, 554–558.CrossRefGoogle Scholar
  2. 2.
    Curran, M. J. and Brodwick, M. S. (1991) Ionic control of the size of the vesicle matrix of beige mouse mast cells. J. Gen. Physiol. 98, 771–790.PubMedCrossRefGoogle Scholar
  3. 3.
    Monck, J. R., Oberhauser, A. F., Alvarez de Toledo, G., and Fernandez, J. M. (1991) Is swelling of the secretory granule matrix the force that dilates the exocytotic fusion pore? Biophys. J. 59, 39–47.PubMedCrossRefGoogle Scholar
  4. 4.
    Finkelstein, A., Zimmerberg, J., and Cohen, F. S. (1986) Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. Annu. Rev. Physiol. 48, 163–174.PubMedCrossRefGoogle Scholar
  5. 5.
    Fernandez, J. M., Villalon, M., and Verdugo, P. (1991) Reversible condensation of mast cell secretory products in vitro. Biophys. J. 59, 1022–1027.PubMedCrossRefGoogle Scholar
  6. 6.
    Holz, R. W. (1986) The role of osmotic forces in exocytosis from adrenal chromaffin cells. Annu. Rev. Physiol. 48, 175–189.PubMedCrossRefGoogle Scholar
  7. 7.
    Almers, W. (1990) Exocytosis. Annu. Rev. Physiol. 52, 607–624.PubMedCrossRefGoogle Scholar
  8. 8.
    Gasser, K. W., DiDomenico, J., and Hopfer, U. (1988) Secretagogues activate chloride transport pathways in pancreatic zymogen granules. Am. J. Physiol. 254, G93-G99.Google Scholar
  9. 9.
    Fuller, C. M., Deetjen, H. H., Piiper, A., and Schulz, I. (1989) Secretagogue and second messenger-activated Cl permeabilities in isolated pancreatic zymogen granules. Pflugers Arch. 415, 29–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Fuller, C. M., Eckhardt, L., and Schulz, I. (1989) Ionic and osmotic dependence of secretion from permeabilised acini of the rat pancreas. Pflugers Arch. 413, 385–394.PubMedCrossRefGoogle Scholar
  11. 11.
    Gasser, K. W. and Hopfer, U. (1990) Chloride transport across the membrane of parotid secretory granules. Am. J. Physiol. 259, 413–420.Google Scholar
  12. 12.
    Thevenod, F., Gasser, K. W., and Hopfer, U. (1990) Dual modulation of chloride conductance by nucleotides in pancreatic and parotid zymogen granules. Biochem. J. 272, 119–126.PubMedGoogle Scholar
  13. 13.
    Piiper, A., Plusczyk, T., Eckhardt, L., and Schulz, I. (1991) Effects of cholecystokinin, cholecystokinin JMV-180 and GTP analogs on enzyme secretion from permeabilized acini and chloride conductance in isolated zymogen granules of the rat pancreas. Eur. J. Biochem. 197, 391–398.PubMedCrossRefGoogle Scholar
  14. 14.
    Thevenod, F., Chathadi, K. V., and Hopfer, U. (1992) ATP-sensitive K+ conductance in pancreatic zymogen granules: block by glyburide and activation by diazoxide. J. Membr. Biol. 129, 253–266.PubMedGoogle Scholar
  15. 15.
    Takuma, T., Ichida, T., Okumura, K., Sasaki, Y., and Kanazawa, M. (1993) Effects of valinomycin on osmotic lysis of zymogen granules and amylase exocytosis from parotid acini. Am. J. Physiol. 264, G895–G901.PubMedGoogle Scholar
  16. 16.
    Thevenod, F., Hildebrandt, J-P., Striessnig, J., de Jong, H. R., and Schulz, I. (1996) Chloride and potassium conductances of mouse pancreatic zymogen granules are inversely regulated by a approximately 80-kDa mdr1a gene product. J. Biol. Chem. 271, 3300–3305.PubMedCrossRefGoogle Scholar
  17. 17.
    Jena, B. P., Schneider, S. W., Geibel, J. P., Webster, P., Oberleithner, H., and Sritharan, K. C. (1997) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc. Natl. Acad. Sci. USA 94, 13,317–13,322.PubMedCrossRefGoogle Scholar
  18. 18.
    Preston, G. M., Carroll, T. P., Guggino,W. B., and Agre, P. (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387.PubMedCrossRefGoogle Scholar
  19. 19.
    Ito, H., Tung, R. T., Sugimoto, T., et al. (1992) On the mechanism of G protein beta gamma subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel. J. Gen. Physiol. 99, 961–983.PubMedCrossRefGoogle Scholar
  20. 20.
    Schwiebert, E. M., Kizer, N., Gruenert, D. C., and Stanton, B. A. (1992) GTP-binding proteins inhibit cAMP activation of chloride channels in cystic fibrosis airway epithelial cells. Proc. Natl. Acad. Sci. USA 89, 10,623–10,627.PubMedCrossRefGoogle Scholar
  21. 21.
    Kirsch, G. E., Codina, J., Birnbaumer, L., and Brown, A. M. (1990) Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. J. Am. J. Physiol 259, H820–H826.Google Scholar
  22. 22.
    Schwiebert, E. M., Light, D. B., Fejes-Toth, G., Naray-Fejes-Toth, A., and Stanton, B. A. (1990) A GTP-binding protein activates chloride channels in a renal epithelium. J. Biol. Chem. 265, 7725–7728.PubMedGoogle Scholar
  23. 23.
    Marinelli, R. A., Pham, L., Agre, P., and LaRusso, N. F. (1997) Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1. J. Biol. Chem. 272, 12,984–12,988.PubMedCrossRefGoogle Scholar
  24. 24.
    Knepper, M. A. (1994) The aquaporin family of molecular water channels. Proc. Natl. Acad. Sci. USA 91, 6255–6258.PubMedCrossRefGoogle Scholar
  25. 25.
    Yasui, M., Hazama, A., Kwon, T. H., Nielsen, S., Guggino, W. B., and Agre, P. (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187.PubMedCrossRefGoogle Scholar
  26. 26.
    Knepper, M. A. and Inoue, T. (1997) Regulation of aquaporin-2 water channel trafficking by vasopressin. Curr. Opin. Cell Biol. 9, 560–564.PubMedCrossRefGoogle Scholar
  27. 27.
    Cho, S. J., Abdus Sattar, A. K., Jeong, E. H., et al. (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc. Natl. Acad. Sci. USA 99, 4720–4724.PubMedCrossRefGoogle Scholar
  28. 28.
    Jena, B. P., Padfield, P. J., Ingebritsen, T. S., and Jamieson, J. D. (1991) Protein tyrosine phosphatase stimulates Ca(2+)-dependent amylase secretion from pancreatic acini. J. Biol. Chem. 266, 17,744–17,746.PubMedGoogle Scholar
  29. 29.
    Cameron, R. S., Cameron, P. L., and Castle, J. D. (1986) A common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands. J. Cell Biol. 103, 1299–1313.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosenzweig, S. A., Miller, L. J., and Jamieson, J. D. (1983) Identification and localization of cholecystokinin-binding sites on rat pancreatic plasma membranes and acinar cells: a biochemical and autoradiographic study. J. Cell Biol. 96, 1288–1297.PubMedCrossRefGoogle Scholar
  31. 31.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  32. 32.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. T4. Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  33. 33.
    Bendayan, M. (1984) Protein A-gold immunocytochemistry: technical approach, applications and limitations. J. Electron Microsc. Tech. 1, 243–270.CrossRefGoogle Scholar
  34. 34.
    Schneider, S. W., Sritharan, K. C., Geibel, J. P., Oberleithner, H., and Jena, B. P. (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc. Natl. Acad. Sci. USA 94, 316–321.PubMedCrossRefGoogle Scholar
  35. 35.
    Henderson, R. M., Schneider, S., Li, Q., Hornby, D., White, S. J., and Oberleithner, H. (1996) Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel protein using atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 8756–8760.PubMedCrossRefGoogle Scholar
  36. 36.
    Walz, T., Hirai, T., Murata, K., et al. (1997) The three-dimensional structure of aquaporin-1. Nature 387, 624–627.PubMedCrossRefGoogle Scholar
  37. 37.
    Cheng, A., van Hoek, A. N., Yeager, M., Verkman, A. S., and Mitra, A. K. (1997) Three-dimensional organization of a human water channel. Nature 387, 627–630.PubMedCrossRefGoogle Scholar
  38. 38.
    Jena, B. P., Gumkowski, F. D., Konieczko, E. M., von Mollard, G. F., Jahn, R., and Jamieson, J. D. (1994) Redistribution of a rab3-like GTP-binding protein from secretory granules to the Golgi complex in pancreatic acinar cells during regulated exocytosis. J. Cell Biol. 124, 43–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Agre, P., Bonhivers, M., and Borgnia, M. J. (1998) The aquaporins, blueprints for cellular plumbing systems. J. Biol. Chem. 273, 14,659–14,662.PubMedCrossRefGoogle Scholar
  40. 40.
    Murata, K., Mitsuoka, K., Hirai, T., et al. (2000) Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Sang-Joon Cho
    • 1
  • Bhanu P. Jena
    • 1
  1. 1.Department of PhysiologyWayne State University School of MedicineDetroit

Personalised recommendations