Advertisement

Porosome

The Fusion Pore Revealed by Multiple Imaging Modalities
  • Bhanu P. Jena
Part of the Methods in Molecular Biology™ book series (MIMB, volume 319)

Abstract

Secretion occurs in all cells of multicellular organisms and involves the delivery of secretory products packaged in membrane-bound vesicles to the cell exterior. Specialized cells for neuro-transmission, enzyme secretion, or hormone release utilize a highly regulated secretory process. Secretory vesicles are transported to specific sites at the plasma membrane, where they dock and fuse to release their contents. Similar to other cellular processes, cell secretion is found to be highly regulated and a precisely orchestrated event. It has been demonstrated that membrane-bound secretory vesicles dock and fuse at porosomes, which are specialized supramolecular structures at the cell plasma membrane. Swelling of secretory vesicles results in a buildup of pressure, allowing expulsion of intravesicular contents. The extent of secretory vesicle swelling dictates the amount of intravesicular contents expelled during secretion. The discovery of the porosome, its isolation, its structure and dynamics at nanometer resolution and in real time, and its biochemical composition and functional reconstitution into artificial lipid membrane have been determined. The molecular mechanism of secretory vesicle fusion at the base of porosomes and vesicle swelling have also been resolved. These findings reveal the molecular machinery and mechanism of cell secretion. In this chapter, the discovery of the porosome, its isolation, its structure and dynamics at nanometer resolution and in real time, and its biochemical composition and functional reconstitution into artificial lipid membrane are discussed.

Key Words

Fusion pore atomic force microscopy electron microscopy 

References

  1. 1.
    Hörber, J. K. H. and Miles, M. J. (2003) Scanning probe evolution in biology. Science 302, 1002–1005.PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson, L. L. (2004) Discovery of a new cellular structure—the porosome: elucidation of the molecular mechanism of secretion. Cell Biol. Int. 28, 3–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Schneider, S. W., Sritharan, K. C., Geibel, J. P., Oberleithner, H., and Jena, B. P. (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma pembrane structures involved in exocytosis. Proc. Natl. Acad. Sci. USA 94, 316–321.PubMedCrossRefGoogle Scholar
  4. 4.
    Cho, S. J., Quinn, A. S., Stromer, M. H., et al. (2002) Structure and dynamics of the fusion pore in live cells. Cell Biol. Int. 26, 35–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Cho, S. J., Jeftinija, K., Glavaski, A., Jeftinija, S., Jena, B. P., and Anderson, L. L. (2002) Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology 143, 1144–1148.PubMedCrossRefGoogle Scholar
  6. 6.
    Cho, S. J., Wakade, A., Pappas, G. D., and Jena, B. P. (2002) New structure involved in transient membrane fusion and exocytosis. Ann. New York Acad. Sci. 971, 254–256.CrossRefGoogle Scholar
  7. 7.
    Jena, B. P., Cho, S. J., Jeremic, A., Stromer, M. H., and Abu-Hamdah, R. (2003) Structure and composition of the fusion pore. Biophys. J. 84, 1337–1343.PubMedCrossRefGoogle Scholar
  8. 8.
    Jeremic, A., Kelly, M., Cho, S. J., Stromer, M. H., and Jena, B. P. (2003) Reconstituted fusion pore. Biophys. J. 85, 2035–2043.PubMedCrossRefGoogle Scholar
  9. 9.
    Cho, S. J., Kelly, M., Rognlien, K. T., Cho, J., Hoerber, J. K. H., and Jena, B. P. (2002) SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys. J. 83, 2522–2527.PubMedCrossRefGoogle Scholar
  10. 10.
    Cho, S. J., Cho, J., and Jena, B. P. (2002) The number of secretory vesicles remains unchanged following exocytosis. Cell Biol. Int. 26, 29–33.PubMedCrossRefGoogle Scholar
  11. 11.
    Jena, B. P. (2002) Fusion pore in live cells. NIPS 17, 219–222.PubMedGoogle Scholar
  12. 12.
    Jena, B. P. (2003) Fusion pore: structure and dynamics. J. Endocrinol. 176, 169-174.Google Scholar
  13. 13.
    Jena, B. P. (1997) Exocytotic fusion: total or transient. Cell Biol. Int. 21, 257–259.PubMedCrossRefGoogle Scholar
  14. 14.
    Jena, B. P. (2004) Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J. Cell Mol. Med. 8, 1–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Cho, W. J., Jeremic, A., Rognlien, K. T., et al. (2004). Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol. Int. 28, 699–708. (published on-line August 25, 2004).PubMedCrossRefGoogle Scholar
  16. 16.
    Kelly, M., Cho, W. J., Jeremic, A., Abu-Hamdah, R., and Jena, B. P. (2004). Vesicle swelling regulates content expulsion during secretion. Cell Biol. Int. 28, 709–716 (published on-line August 25, 2004).PubMedCrossRefGoogle Scholar
  17. 17.
    Jeremic, A., Kelly, M., Cho, W. J., Cho, S. J., Horber, J. K. H., and Jena, B. P. (2004) Calcium drives fusion of SNARE-apposed bilayers. Cell Biol. Int. 28, 19–31 (published on-line 2003).PubMedCrossRefGoogle Scholar
  18. 18.
    Jeremic, A., Cho, W. J., and Jena, B. P. (2004) Membrane fusion: what may transpire at the atomic level. J. Biol. Phys. Chem. 4, 139–142.CrossRefGoogle Scholar
  19. 19.
    Jena, B. P., Schneider, S. W., Geibel, J. P., Webster, P., Oberleithner, H., and Sritharan, K. C. (1997) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc. Natl. Acad. Sci. USA 94, 13,317–13,322.PubMedCrossRefGoogle Scholar
  20. 20.
    Cho, S. J., Sattar, A. K., Jeong, E.-H., et al. (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc. Natl. Acad. Sci. USA 99, 4720–4724.PubMedCrossRefGoogle Scholar
  21. 21.
    Abu-Hamdah, R., Cho, W. J., Cho, S. J., et al. (2004) Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol. Int. 28, 7–17. (published on-line 2003).PubMedCrossRefGoogle Scholar
  22. 22.
    Taraska, J. W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S., and Almers, W. (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl. Acad. Sci. USA 100, 2070–2075.PubMedCrossRefGoogle Scholar
  23. 23.
    Aravanis, A. M., Pyle, J. L., and Tsien, R. W. (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647.PubMedCrossRefGoogle Scholar
  24. 24.
    Tojima, T., Yamane, Y., Takagi, H., et al. (2000) Three-dimensional characterization of interior structures of exocytotic apertures of nerve cells using atomic force microscopy. Neuroscience 101, 471–481.PubMedCrossRefGoogle Scholar
  25. 25.
    Thorn, P., Fogarty, K. E., and Parker, I. (2004) Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc. Natl. Acad. Sci. USA 101, 6774–6779.PubMedCrossRefGoogle Scholar
  26. 26.
    Lee, J. S., Mayes, M. S., Stromer, M. H., Scanes, C. G., Jeftinija, S., and Anderson, L. L. (2004) Number of secretory vesicles in growth hormone cells of the pituitary remains unchanged after secretion. Exp. Biol. Med. 229, 291–302.Google Scholar
  27. 27.
    Fix, M., Melia, T. J., Jaiswal, J. K., et al. (2004) Imaging single membrane fusion events mediated by SNARE proteins. Proc. Natl. Acad. Sci. USA 101, 7311–7316.PubMedCrossRefGoogle Scholar
  28. 28.
    Binnig, G., Quate, C. F., and Gerber, C. H. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.PubMedCrossRefGoogle Scholar
  29. 29.
    Weber, T., Zemelman, B. V., McNew, J. A., et al. (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.PubMedCrossRefGoogle Scholar
  30. 30.
    Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V., and Hansma, P. K. (1989) An atomic resolution atomic force microscope implemented using an optical lever. J. Appl. Phys. 65, 164–167.CrossRefGoogle Scholar
  31. 31.
    Jeong, E-H., Webster, P., Khuong, C. Q., Sattar, A. K. M. A., Satchi, M., and Jena, B. P. (1998) The native membrane fusion machinery in cells. Cell Biol. Int. 22, 657-670.Google Scholar
  32. 32.
    Thoidis, G., Chen, P., Pushkin, A. V., et al. (1998) Two distinct populations of synaptic-like vesicles from rat brain. Proc. Natl. Acad. Sci. USA 95, 183–188.PubMedCrossRefGoogle Scholar
  33. 33.
    Monck, J. R., Oberhauser, A. F., and Fernandez, J. M. (1995) The exocytotic fusion pore interface: a model of the site of neurotransmitter release. Mol. Membr. Biol. 12, 151–156.PubMedCrossRefGoogle Scholar
  34. 34.
    Gaisano, H. Y., Sheu, L., Wong, P. P., Klip, A., and Trimble, W. S. (1997) SNAP-23 is located in the basolateral plasma membrane of rat pancreatic acinar cells. FEBS Lett. 414, 298–302.PubMedCrossRefGoogle Scholar
  35. 35.
    Bennett, V. (1990) Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol. Rev. 70, 1029–1065.PubMedGoogle Scholar
  36. 36.
    Faigle, W., Colucci-Guyon, E., Louvard, D., Amigorena, S., and Galli, T. (2000) Vimentin filaments in fibroblasts are a reservoir for SNAP-23, a component of the membrane fusion machinery. Mol. Biol. Cell. 11, 3485–3494.PubMedGoogle Scholar
  37. 37.
    Goodson, H. V., Valetti, C., and Kreis, T. E. (1997) Motors and membrane traffic. Curr. Opin. Cell Biol. 9, 18–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakano, M., Nogami, S., Sato, S., Terano, A., and Shirataki, H. (2001) Interaction of syntaxin with α-fodrin, a major component of the submembranous cytoskeleton. Biochem. Biophys. Res. Commun. 288, 468–475.PubMedCrossRefGoogle Scholar
  39. 39.
    Ohyama, A., Komiya, Y., and Igarashi, M. (2001) Globular tail of myosin-V is bound to vamp/synaptobrevin. Biochem. Biophys. Res. Commun. 280, 988–991.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Bhanu P. Jena
    • 1
  1. 1.Department of PhysiologyWayne State University School of MedicineDetroit

Personalised recommendations