Near-Field Scanning Optical Microscopy in Cell Biology and Cytogenetics

  • Michael Hausmann
  • Birgit Perner
  • Alexander Rapp
  • Leo Wollweber
  • Harry Scherthan
  • Karl-Otto Greulich
Part of the Methods in Molecular Biology™ book series (MIMB, volume 319)


Light microscopy has proven to be one of the most versatile analytical tools in cell biology and cytogenetics. The growing spectrum of scientific knowledge demands a continuous improvement of the optical resolution of the instruments. In far-field light microscopy, the attainable resolution is dictated by the limit of diffraction, which, in practice, is about 250 nm for high-numerical-aperture objective lenses. Near-field scanning optical microscopy (NSOM) was the first technique that has overcome this limit up to about one order of magnitude. Typically, the resolution range below 100 nm is accessed for biological applications. Using appropriately designed scanning probes allows for obtaining an extremely small near-field light excitation volume (some tens of nanometers in diameter). Because of the reduction of background illumination, high contrast imaging becomes feasible for light transmission and fluorescence microscopy. The height of the scanning probe is controlled by atomic force interactions between the specimen surface and the probe tip. The control signal can be used for the production of a topographic (nonoptical) image that can be acquired simultaneously. In this chapter, the principle of NSOM is described with respect to biological applications. A brief overview of some requirements in biology and applications described in the literature are given. Practical advice is focused on instruments with aperture-type illumination probes. Preparation protocols focussing on NSOM of cell surfaces and chromosomes are presented.

Key Words

Near-field scanning optical microscopy NSOM applications in biology cell surfaces metaphase chromosomes meiotic chromosomes 


  1. 1.
    Abbe, E. (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413–468.CrossRefGoogle Scholar
  2. 2.
    Lord Rayleigh, F. R. S. (1879) Investigation in optics, with special reference to the spectroscope. Philos. Mag. 8, 261–274.Google Scholar
  3. 3.
    Born, M. and Wolf, E. (1970) Principles in Optics, 4th ed., Pergamon, Oxford, pp. 414–419.Google Scholar
  4. 4.
    Stelzer, E. H. K. (1998) Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence microscopy. J. Microsc. 189, 15–24.CrossRefGoogle Scholar
  5. 5.
    Kozubek, M. (2001) Theoretical versus experimental resolution in optical microscopy. Microsc. Res. Tech. 53, 157–166.PubMedCrossRefGoogle Scholar
  6. 6.
    Edelmann, P., Esa, A., Hausmann, M., and Cremer, C. (1999) Confocal laserscanning fluorescence microscopy: in situ determination of the confocal pointspread function and the chromatic shifts in intact cell nuclei. Optik 110, 194–198.Google Scholar
  7. 7.
    Sarikaya, M. (1992) Evolution of resolution in microscopy. Ultramicroscopy 47, 1–14.CrossRefGoogle Scholar
  8. 8.
    Zhang, P., Kopelman, R., and Tan, W. (2000) Subwavelength optical microscopy and spectroscopy using near-field optics. Crit. Rev. Solid State Mater. Sci. 25, 87–162.CrossRefGoogle Scholar
  9. 9.
    De Lange, F., Cambi, A., Huijbens, R., et al. (2001) Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J. Cell Sci. 114, 4153–4160.PubMedGoogle Scholar
  10. 10.
    Wilson, T., ed. Journal of microscopy, vol. 202, 1–450.Google Scholar
  11. 11.
    Synge, E. H. (1928) A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 6, 356–362.Google Scholar
  12. 12.
    McCutchen, C. W. (1967) Superresolution in microscopy and the Abbe resolution limit. J. Opt. Soc. Am. 57, 1190–1192.PubMedCrossRefGoogle Scholar
  13. 13.
    Binnig, G., Rohrer, H., Gerber, C., and Weibel, E. (1982) Surface studies by scanning tunnelling microscopy. Phys. Rev. Lett. 49, 57–61.CrossRefGoogle Scholar
  14. 14.
    Binnig, G., Quate, C. F., and Gerber C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.PubMedCrossRefGoogle Scholar
  15. 15.
    Pohl, D. W., Denk,W., and Lanz, M. (1984) Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653.CrossRefGoogle Scholar
  16. 16.
    Betzig, E., Lewis, A., Harootuniam, A., Isaacson, M., and Kratschmer, E. (1986) Near-field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J. 49, 269–279.PubMedCrossRefGoogle Scholar
  17. 17.
    Dürig, U., Pohl, D. W., and Rohner, F. (1986) Near-field optical-scanning microscopy. J. Appl. Phys. 59, 3318–3327.CrossRefGoogle Scholar
  18. 18.
    Boyde, A. (1980) Review of basic preparation techniques for biological scanning electron microscopy, in Electron Microscopy, Vol II (Brederoo, P. and de Priester, W. eds.), Electron Microcopy Foundation, Leiden, pp. 768–777.Google Scholar
  19. 19.
    Betzig, E. and Chichester, R. J. (1993) Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425.PubMedCrossRefGoogle Scholar
  20. 20.
    Subramaniam,V., Kirsch, A. K., and Jovin, T. M. (1998) Cell biological applications of scanning near-field optical microscopy (SNOM). Cell Mol. Biol. 44, 689–700.PubMedGoogle Scholar
  21. 21.
    Talley, C. E., Cooksey, G. A., and Dunn, R. C. (1996) High-resolution fluorescence imaging with cantilevered near-field fiber optic probes. Appl. Phys. Lett. 69, 3809–3811.CrossRefGoogle Scholar
  22. 22.
    Enderle, T., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan C., and Weiss, S. (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color nearfield scanning optical microscopy. Proc. Natl. Acad. Sci. USA 94, 520–525.PubMedCrossRefGoogle Scholar
  23. 23.
    Hwang, J., Gheber, L. A., Margolis, L., and Edidin, M. (1998) Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys. J. 74, 2184–2190.PubMedCrossRefGoogle Scholar
  24. 24.
    Kirsch, A. K., Subramaniam, V., Jenei, A., and Jovin, T. M. (1999) Fluorescence resonance energy transfer detected by scanning near-field optical microscopy. J. Microsc. 194, 448–454.PubMedCrossRefGoogle Scholar
  25. 25.
    Perner, B., Hausmann, M., Wollweber, L., Rapp, A., Monajembashi, S., and Greulich, K. O. (2000) Scanning near-field optical microscopy after structure conserving air-drying. Proc. SPIE 4164, 10–17.CrossRefGoogle Scholar
  26. 26.
    Nagy, P., Jenei, A., Kirsch, A. K., Szöllösi, J., Damjanovich, S., and Jovin, T. M. (1999) Activation-dependent clustering of the erbB2 receptor thyrosine kinase detected by scanning near-field optical microscopy. J. Cell Sci. 112, 1733–1741.PubMedGoogle Scholar
  27. 27.
    Perner, B., Rapp, A., Dressler, C., et al. (2002) Variations in cell surfaces of estrogen treated breast cancer cells detected by a combined instrument for far-field and near-field microscopy. Analyt. Cell. Pathol. 24, 89–100.Google Scholar
  28. 28.
    Micheletto, R., Denyer, M., Scholl, M., et al. (1999) Observation of the dynamics of live cardiomyocytes through a free-running scanning near-field optical microscopy setup. Appl. Opt. 38, 6648–6652.PubMedCrossRefGoogle Scholar
  29. 29.
    Wiegräbe, W., Monajembashi, S., Dittmar, H., et al. (1997) Scanning near-field optical microscope—a method for investigating chromosomes. Surface Interface Anal. 25, 510–513.CrossRefGoogle Scholar
  30. 30.
    Held, N., Hausmann, M., Perner, B., and Greulich, K. O. (2000) Optische Rasternahfeld-mikroskopie in der Zytogenetik. CLB Chem. Labor Biotechn. 51, (9/2000), 324–327.Google Scholar
  31. 31.
    Moers, M. H. P., Kalle,W. H. J., Ruiter, A. G. T., et al. (1996) Fluorescence in situ hybridization of human metaphase chromosomes detected by near-field scanning optical microscopy. J. Microsc. 182, 40–45.PubMedGoogle Scholar
  32. 32.
    Meixner, A. J. and Kneppe, H. (1998) Scanning near-field optical microscopy in cell biology and microbiology. Cell. Mol. Biol. 44, 673–688.PubMedGoogle Scholar
  33. 33.
    Hausmann, M., Perner, B., Rapp, A., Scherthan, H., and Greulich, K. O. (2001) SNOM imaging of mitotic and meiotic chromosomes. Eur. Microsc. Anal. 71,(5/2001), 5–7.Google Scholar
  34. 34.
    Winkler, R., Perner, B., Rapp, A., et al. (2002) Labelling quality and chromosome morphology after low temperature FISH analysed by scanning far-field and scanning near-field optical microscopy. J. Microsc. 209, 23–33.CrossRefGoogle Scholar
  35. 35.
    Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selva, P. R., and Weiss, S. (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268.PubMedCrossRefGoogle Scholar
  36. 36.
    Garcia-Parajo, M. F., Veerman, J. A., Ruiter, A. G., and van Hulst, N. F. (1998) Near-field optical and shear-field microscopy of single fluorophores and DNA molecules. Ultramicroscopy 71, 311–319.PubMedCrossRefGoogle Scholar
  37. 37.
    Ambrose, W. P., Affleck, R. L., Goodwin, P. M., et al. (1995) Imaging of biological molecules with single molecule sensitivity using near-field scanning optical microscopy. Exp. Tech. Phys. 41, 237–248.Google Scholar
  38. 38.
    Garcia-Parajo, M. F., Veerman, J. A., Segers-Nolten, G. M., de Grooth, B., Greve, J., and van Hulst, N. F. (1999) Visualising individual green fluorescent proteins with a near-field optical microscope. Cytometry 36, 239–246.PubMedCrossRefGoogle Scholar
  39. 39.
    Van Hulst, N. F., Veerman, J. A., Garcia-Parajo, M. F., and Kuipers, L. (2000) Analysis of individual (macro) molecules and proteins using near-field optics. J. Chem. Phys. 112, 7799–7810.CrossRefGoogle Scholar
  40. 40.
    Clark, M. (ed.) (1996) In Situ Hybridization. Chapman & Hall, Weinheim.Google Scholar
  41. 41.
    Van der Ploeg, M. (2000) Cytochemical nucleic acid research during the twentieth century. Eur. J. Histochem. 44, 7–42.PubMedGoogle Scholar
  42. 42.
    Durm, M., Haar, F.-M., Hausmann, M., Ludwig, H., and Cremer, C. (1997) Nonenzymatic, low temperature fluorescence in situ hybridization of human chromosomes with a repetitive-satellite probe. Z. Naturforsch. 52c, 82–88.Google Scholar
  43. 43.
    Scherthan, H., Jarratsch, M., Li, B., et al. (2000) Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Mol. Biol. Cell 11, 4189–4203.PubMedGoogle Scholar
  44. 44.
    Lambelet, P., Pfeffer, M., Sayah, A., and Marquis-Waible, F. (1998) Reduction of tip-sample interaction forces for scanning near-field optical microscopy in a liquid environment, Ultramicroscopy 71, 117–121.CrossRefGoogle Scholar
  45. 45.
    Mannelquist, A., Iwamoto, H., Szabo, G., and Shao, Z. (2001) Near-field optical microscopy with a vibrating probe in aqueous solution. Appl. Phys. Lett. 78, 2076–2078.CrossRefGoogle Scholar
  46. 46.
    Mannelquist, A., Iwamoto, H., Szabo, G., and Shao, Z. (2002) Near-field optical microscopy in aqueous solution: implementation and characterization of a vibrating probe. J. Microsc. 205, 53–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Hecht, B., Bielefeldt, H., Inouye,Y., and Pohl, D. W. (1997) Facts and artifacts in near-field optical microscopy. J. Appl. Phys. 81, 2492–2498.CrossRefGoogle Scholar
  48. 48.
    Kalkbrenner, T., Graf, M., Durkan, C., Mlynek, J., and Sandoghdar, V. (2000) High-contrast topography-free sample for near-field optical microscopy. Appl. Phys. Lett. 76, 1206–1208.CrossRefGoogle Scholar
  49. 49.
    Beuthan, J., Hausmann, M., Minet, O., Perner, B., Dressler, C., and Eberle, H. G. (2001) Approximative determination of the modulation transfer function of the scanning near field microscope using biological samples. Techn. Messen. 3/2001, 127–130.Google Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Michael Hausmann
    • 1
  • Birgit Perner
    • 2
  • Alexander Rapp
    • 2
  • Leo Wollweber
    • 2
  • Harry Scherthan
    • 3
  • Karl-Otto Greulich
    • 2
  1. 1.Kirchoff Institute of PhysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Single Cell and Single Molecule TechniquesInstitute of Molecular BiotechnologyJenaGermany
  3. 3.Max-Planck-Institute for Molecular GeneticsBerlinGermany

Personalised recommendations