Molecular Beacons

Fluorescent Probes for Detection of Endogenous mRNAs in Living Cells
  • Diana P. Bratu
Part of the Methods in Molecular Biology™ book series (MIMB, volume 319)


A novel approach for detecting nucleic acid in solution has been adopted for real-time imaging of native mRNAs in living cells. This method utilizes hybridization probes, called “molecular beacons,” that generate fluorescent signals only when they are hybridized to a complementary target sequence. Nuclease-resistant molecular beacons are designed to efficiently hybridize to accessible regions within RNAs and then be detected via fluorescence microscopy. The target regions chosen for probe binding are selected using two computer algorithms, mfold and OligoWalk, that predict the secondary structure of RNAs and help narrow down sequence stretches to which the probes should bind with high affinity in vivo. As an example, molecular beacons were designed against regions of oskar mRNA, microinjected into living Drosophila melanogaster oocytes and imaged via confocal microscopy.

Key Words

Molecular beacons fluorescent probes hybridization secondary structure prediction RNA localization live-cell imaging 


  1. 1.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308.CrossRefGoogle Scholar
  2. 2.
    Bratu, D. P., Cha, B. J., Mhlanga, M. M., Kramer, F. R., and Tyagi, S. (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl. Acad. Sci. USA 100, 13,308–13,313.PubMedCrossRefGoogle Scholar
  3. 3.
    Matsuo, T. (1998) In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochem. Biophys. Acta 1379, 178–184.PubMedGoogle Scholar
  4. 4.
    Sokol, D. L., Zhang, X., Lu, P., and Gewirtz, A. M. (1998) Real time detection of DNA.RNA hybridization in living cells. Proc. Natl. Acad. Sci. USA 95, 11,538–11,543.PubMedCrossRefGoogle Scholar
  5. 5.
    Southern, E. M., Milner, N., and Mir, K. U. (1997) Discovering antisense reagents by hybridization of RNA to oligonucleotide arrays. Ciba Found. Symp. 209, 38–44; discussion 44–46.PubMedGoogle Scholar
  6. 6.
    Ho, S. P., Bao, Y., Lesher, T., et al. (1998) Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nature Biotechnol. 16, 59–63.CrossRefGoogle Scholar
  7. 7.
    Lima, W. F., Mohan, V., and Crooke, S. T. (1997) The influence of antisense oligonucleotide-induced RNA structure on Escherichia coli RNase H1 activity. J. Biol. Chem. 272, 18,191–18,199.PubMedCrossRefGoogle Scholar
  8. 8.
    Milner, N., Mir, K. U., and Southern, E. M. (1997) Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nature Biotechnol. 15, 537–541.CrossRefGoogle Scholar
  9. 9.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 1–10.CrossRefGoogle Scholar
  10. 10.
    Mathews, D. H., Burkard, M. E., Freier, S. M., Wyatt, J. R., and Turner, D. H. (1999) Predicting oligonucleotide affinity to nucleic acid targets. RNA 5, 1458–1469.PubMedCrossRefGoogle Scholar
  11. 11.
    Peyret, N., Seneviratne, P. A., Allawi, H. T., and SantaLucia, J., Jr. (1999) Nearestneighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38, 3468–3477.PubMedCrossRefGoogle Scholar
  12. 12.
    SantaLucia, J., Jr. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465.PubMedCrossRefGoogle Scholar
  13. 13.
    SantaLucia, J., Jr., Allawi, H. T., and Seneviratne, P. A. (1996) Improved nearestneighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562.PubMedCrossRefGoogle Scholar
  14. 14.
    Sugimoto, N., Nakano, S., Katoh, M., et al. (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11,211–11,216.PubMedCrossRefGoogle Scholar
  15. 15.
    Xia, T., SantaLucia, J., Jr., Burkard, M. E., et al. (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37, 14,719–14,735.PubMedCrossRefGoogle Scholar
  16. 16.
    Marras, S. A., Kramer, F. R., and Tyagi, S. (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122.PubMedCrossRefGoogle Scholar
  17. 17.
    Bratu, D. P. (2003) Imaging Native mRNAs in Living Drosophila Oocytes Using Molecular Beacons. New York University, UMI Dissertation Service, New York, New York.Google Scholar
  18. 18.
    Tyagi, S., Bratu, D. P., and Kramer, F. R. (1998) Multicolor molecular beacons for allele discrimination. Nature Biotechnol. 16, 49–53.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2006

Authors and Affiliations

  • Diana P. Bratu
    • 1
    • 2
  1. 1.Department of Molecular GeneticsPublic Health Research InstituteNewark
  2. 2.Program of Molecular MedicineUniversity of Massachusetts Medical SchoolWorcester

Personalised recommendations