Skip to main content

Synthesis of [15N]-Labeled DNA Fragments

  • Protocol
Protocols for Oligonucleotide Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 26))

Abstract

DNA fragments labeled with 15N have the potential to provide novel insight into base pairing, hydration, drug/nucleic acid, and protein/ nucleic acid interactions. Synthetic routes to a variety of [15N]-labeled pyrimidine nucleosides (13), purines (46), and purine nucleosides (713) have been reported. In some cases these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis (9,10,1417) or by biosynthetic procedures (1822). The focus of this chapter will be on the preparation of [15N]-labeled purine 2′-deoxynucleosides and their incorporation into DNA fragments by chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeGraw, J. I. and Lawson, J. A. (1978) Thymidine-6-13C-a,a,a,-d3-l,3-15N2, in Nucleic Acid Chemistry (Townsend, L. B. and Tipson, R. S., eds.), Wiley Interscience, New York, pp. 921–926.

    Google Scholar 

  2. Poulter, C. D. and Livingston, C. L. (1979) [3-15N]-2′,3′,5′-Tri-0-Benzoyluridine. Detection of hydrogen bonding in A-U base pairs by 15N NMR Tetrahedron Lett 9, 755–758.

    Article  Google Scholar 

  3. Niu, C.-H. (1984) Synthesis of [4-15NH2]-and [l,3-15N2]-cytidine derivatives for use in NMR-monitored binding tests Anal. Biochem 139, 404–407

    Article  CAS  Google Scholar 

  4. Leonard, N J. and Henderson, T. R. (1975) Purine ring rearrangements leading to the development of cytokinin activity. Mechanism of the rearrangement of 3-benzyladenine to N6-benzyladenine J. Am. Chem Soc. 97, 4990–4999.

    Article  CAS  Google Scholar 

  5. Barrio, M. D. C. G, Scopes, D. I. C, Hohwick, J. B, and Leonard, N J. (1981) Syntheses of all singly labeled [15N] adenines: Mass spectral fragmentation of adenine Proc. Natl. Acad. Sci. USA 78, 3986–3988.

    Article  Google Scholar 

  6. Sethi, S. K., Gupta, S. P., Jenkins, E. E., Whitehead, C. W., Townsend, L. B., and McCloskey, J. A. (1982) Mass spectrometry of nucleic acid constituents. Electron ionization spectra of selectively labeled adenines J. Am. Chem. Soc. 104, 3349–3353.

    Article  CAS  Google Scholar 

  7. Golding, B. T., Slaich, P K, and Watson, W. P. (1986) Conversion of ‘AICAriboside’ into [15N]-guanosines.J. Chem. Soc, Chem. Commun. 901–902.

    Google Scholar 

  8. Gao, X. and Jones, R. A. (1987) Nitrogen-15-labeled deoxynucleosides. Synthesis of [6-15N]-and [l-15N] deoxyadenosines from deoxyadenosine J. Am. Chem. Soc. 109, 1275–1278

    Article  CAS  Google Scholar 

  9. Kupferschmitt, G., Schmidt, J., Schmidt, T, Fera, B., Buck, R., and Ruterjans, H. (1987) 15N labeling of oligodeoxynucleotides for NMR studies of DNA-ligand interactions Nucleic Acids Res. 15, 6225–6241

    Article  CAS  Google Scholar 

  10. Massefski, W., Jr., Redfield, A., Sarma, U. D., Bannerji, A., and Roy, S. (1990) [7-15N]Guanosine-labeled oligonucleotides as nuclear magnetic resonance probes for protein-nucleic acid interaction in the major groove J. Am. Chem. Soc. 112, 5350–5351.

    Article  CAS  Google Scholar 

  11. Gaffney, B L, Kung, P-P., and Jones, R A (1990) Nitrogen-15-labeled deoxynucleosides 2 Synthesis of [7-15N] labeled deoxyadenosine, deoxyguanosine, and related deoxynucleosides J. Am. Chem. Soc. 112, 6748–6749.

    Article  CAS  Google Scholar 

  12. Rhee, Y. S. and Jones, R. A. (1990) Nitrogen-15-labeled deoxynucleosides. 3 Synthesis of [3-15N] labeled 2′-deoxyadenosine J. Am. Chem. Soc. 112, 8174–8175.

    Article  CAS  Google Scholar 

  13. Goswami, B. and Jones, R. A. (1991) Nitrogen-15-labeled deoxynucleosides 4. synthesis of [l-15N]-and [2-15N]-labeled 2′-deoxyguanosines J Am. Chem. Soc 113, 644–647.

    Article  CAS  Google Scholar 

  14. Gao, X. and Jones, R A (1987) Nitrogen-15-labeled oligodeoxynucleotides Characterization by 15N NMR of d[CGTACG] containing 15N6-or 15Nl-labeled deoxyadenosine J.Am Chem Soc 109, 3169–3171.

    Article  CAS  Google Scholar 

  15. Wang, C, Gao, X, and Jones, R A (1991) Nitrogen-15-labeled oligodeoxynucleotides. 2. Solvent isotope effects on the chemical shift of the adenine N1 in an A/T base pair J Am. Chem. Soc. 113, 1448–1450.

    Article  CAS  Google Scholar 

  16. Wang, C, Gao, H, Gaffney, B. L., and Jones, R A. (1991) Nitrogen-15-labeled oligodeoxynucleotides. 3. Protonation of the adenine Nl in the A/C and A/G mispairs of the duplexes [CG(15N1)AGAATTCCCG]2 and [CGGGAATTC(15N1)ACG]2 J Am. Chem Soc 113, 5486–5488

    Article  CAS  Google Scholar 

  17. Gaffney, B. L., Wang, C, and Jones, R. A. (1992) Nitrogen-15-labeled oligodeoxynucleotides. 4. Tetraplex formation of d[G(15N1)GTTTTTGG] and d[T(15N7GGGT] monitored by 1H detected 15N NMR J. Am. Chem. Soc 114, 4041–4050.

    Article  Google Scholar 

  18. Griffey, R. H., Poulter, C. D., Yamaizumi, Z., Nishimura, S, and Hurd, R. E (1982) 1H NMR studies of 15N-labeled Escherichia coli tRNAfMet Use of 1J,1h. 15N couplings to identify imino resonances of undine-related bases J Am. Chem Soc. 104, 5810–5811.

    Article  CAS  Google Scholar 

  19. Roy, S, Papastavros, M Z., Sanchez, V., and Redfield, A. G. (1984) Nitrogen-15-labeled yeast tRNAPhe: Double and two-dimensional heteronuclear NMR of guanosine and uracil ring NH groups Biochemistry 23, 4395–4400.

    Article  CAS  Google Scholar 

  20. Gewirth, D. T., Arbo, S R., Leontis, N B, and Moore, P. B. (1987) Secondary structure of 5S RNA. NMR experiments on RNA molecules partially labeled with nitrogen-15 Biochemistry 26, 5213–5220

    Article  CAS  Google Scholar 

  21. Davis, D. R., Yamaizumi, Z., Nishimura, S., and Poulter, C. D. (1989) 15N-labeled 5S RNA. Identification of uridine base pairs in Escherichia coli 5S RNA by 1H-15N multiple quantum NMR Biochemistry 28, 4105–4108

    Article  CAS  Google Scholar 

  22. Davis, D. R. and Poulter, C. D. (1991) 1H-15N NMR studies of Escherichia coli tRNAPhe from hisT mutants: A structural role for pseudouridine Biochemistry 30, 4223–4231.

    Article  CAS  Google Scholar 

  23. Robins, M. J. and Trip, E M. (1973) Sugar-modified N6-(3-methyl-2-butenyl)adenosine derivatives, N6-benzyl analogs, and cytokmin-related nucleosides containing sulfur or formycin Biochemistry 12, 2179–2187.

    Article  CAS  Google Scholar 

  24. Ueda, T, Miura, K, and Kasai, T (1978) Synthesis of 6-thioguanine and 2,6-diaminopurine nucleosides and nucleotides from adenine counterparts via a facile rearrangement in the base portion Chem Pharm Bull. 26, 2122–2127

    CAS  Google Scholar 

  25. MacCoss, M., Ryu, E. K, White, R. S., and Last, R. L. (1980) A new synthetic use of nucleoside N1-oxides J. Org. Chem. 45, 788–794.

    Article  CAS  Google Scholar 

  26. Krenitsky, T. A., Koszalka, G. W, and Tuttle, J. V (1981) Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases Biochemistry 20, 3615–3621.

    Article  CAS  Google Scholar 

  27. Kremtsky, T. A., Hideout, J. L., Chao, E. Y, Koszalka, G. W., Gurney, F., Crouch, R. C, Cohn, N. K., Wolberg, G., and Vinegar, R. (1986) Imidazo[4,5-c]pyridines (3-deazapurmes) and their nucleosides as immunosuppressive and antiinflammatory agents J Med. Chem. 29, 138–143.

    Article  Google Scholar 

  28. Krenitsky, T. A., Hall, W. W., Selph, J. L., Truax, J. F., and Vinegar, R (1989) Nucleosides of azathiopnne and thiamiprine as antiarthritics J. Med Chem. 32, 1471–1475

    Article  CAS  Google Scholar 

  29. Chern, J.-W. and Townsend, L. B. (1985) A novel and efficient synthesis of the naturally occurring nucleoside doridosine Tetrahedron Lett 26, 6419–6422.

    Article  CAS  Google Scholar 

  30. Groziak, M. P. and Townsend, L. B. (1986) A new and efficient synthesis of guanosine J Org. Chem 51, 1277–1282.

    Article  CAS  Google Scholar 

  31. Chern, J.-W., Lin, G.-S, Chen, C-S., and Townsend, L. B. (1991) Nucleosides. 3, Reactions of AICA-riboside with isothiocyanates A convenient synthesis of isoguanosine and xanthosine derivatives J. Org. Chem. 56, 4213–4218.

    Article  CAS  Google Scholar 

  32. Matteucci, M. D. and Caruthers, M. H. (1981) Synthesis of deoxyoligonucleo-tides on a polymer support J. Am. Chem. Sac. 103, 3185–3191.

    Article  CAS  Google Scholar 

  33. Froehler, B. C, Ng, P. G., and Matteucci, M. D. (1986) Synthesis of DNA via deoxynucleoside H-phosphonate intermediates Nucleic Acids Res. 14, 5399–5407.

    Article  CAS  Google Scholar 

  34. Froehler, B. C. and Mateucci, M, D. (1986) Nucleoside H-phosphonates: Valuable intermediates in the synthesis of deoxyoligonucleotides Tetrahedron Lett 27, 469–472.

    Article  CAS  Google Scholar 

  35. Garegg, P. J., Lindh, I., Regberg, T., Stawínski, J., and Strdmberg, R. (1986) Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucle-otides by the hydrogen phosphonate approach Tetrahedron Lett. 27, 4051–4054.

    Article  CAS  Google Scholar 

  36. Gao, H,, Gaffney, B. L., and Jones, R. A. (1991) H-phosphonate oligonucleotide synthesis on a poylethylene glycol/polystyrene copolymer Tetrahedron Lett. 32, 5477–5480.

    Article  CAS  Google Scholar 

  37. Andrus, A., Efcavitch, J. W., McBride, L. J., and Giusti, B (1988) Novel activating and capping reagents for improved hydrogen-phosphonate DNA synthesis Tetrahedron Lett 29, 861–864.

    Article  CAS  Google Scholar 

  38. Gaffney, B. L. and Jones, R. A. (1988) Large-scale oligonucleotide synthesis by the H-phosphonate method Tetrahedron Lett. 29, 2619–2622.

    Article  CAS  Google Scholar 

  39. Gaffney, B. L. and Jones, R. A. (1989) Thermodynamic comparison of the base pairs formed by the carcinogenic lesion O6-methylguanine with reference both to Watson-Crick pairs and to mismatched pairs Biochemistry 28, 5881–5889

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Jones, R.A. (1994). Synthesis of [15N]-Labeled DNA Fragments. In: Protocols for Oligonucleotide Conjugates. Methods in Molecular Biology, vol 26. Humana Press. https://doi.org/10.1007/978-1-59259-513-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-513-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-252-1

  • Online ISBN: 978-1-59259-513-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics