Skip to main content

Protein Hydration

  • Protocol
Protein Biotechnology

Part of the book series: Biological Methods ((BM))

Abstract

All biological activity critically depends on a correctly folded protein state, and folding takes place on the ribosome in an aqueous medium. Even in vitro, crystalline proteins contain almost 40% water (1). Hydration is therefore likely to play a major role in the maintenance of the native state. The physical properties of water, too, are sensitive to the same factors that influence protein stability, so that some connection is likely. Nevertheless, the realization that hydration might be an important factor in biological and technological function only dates from the early 1970s. Figure 1 summarizes the chronological development of our present understanding of two aspects of enzyme function: specificity and catalytic activity (2). It is now accepted that protein hydration interactions are of crucial importance in the maintenance of higher order structures and in rendering proteins useful as technological macromolecules. As will presently be shown, however, there is as yet little understanding about the details of such interactions and their role in determining the functional attributes of proteins.

Chronology of our understanding of the mechanisms that govern enzyme catalysis (ref. 2). Note that a consideration of solvation as a contributing factor dates only from 1970.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Finney J. L. (1979) in Water—A Comprehensive Treatise, vol. 6 (Franks F., ed.) Plenum, New York, pp. 47–122.

    Google Scholar 

  2. Rupley J. A. (1979) in Characterisation of Protein Conformation and Function (Franks F., ed.) Symposium Press, London, pp. 54–61.

    Google Scholar 

  3. Franks F. (1975) in ref. 1, 4, 1–94.

    CAS  Google Scholar 

  4. Franks F. and Grigera J. R. (1990) Water Sci. Rev. 5, 187–289.

    Article  CAS  Google Scholar 

  5. Friedman H. L. and Krishnan C.V. (1973) in ref. 1, 3, 1–118.

    CAS  Google Scholar 

  6. Enderby J. E. and Neilson G. W. (1979) in ref. 1, 6, 1–45.

    CAS  Google Scholar 

  7. Frank H. S. and Wen W. Y. (1957) Disc. Faraday Soc. 24, 133.

    Article  Google Scholar 

  8. Conway B. E. (1981) Ionic Hydration in Chemistry and Biophysics, Elsevier, Amsterdam.

    Google Scholar 

  9. Friedman H. L. (1978) Faraday Disc. Chem. Soc. 64, 1.

    Google Scholar 

  10. Privalov P. L. and Khechinashvili N. N. (1974) J. Mol. Biol 86, 4291–4303.

    Article  Google Scholar 

  11. Ratcliffe C. I. and Irish D. E. (1988) Water Sci. Rev. 3, 1–78.

    Article  Google Scholar 

  12. Franks F. and Desnoyers J. E. (1985) Water Sci. Rev. 1, 171–232.

    Article  Google Scholar 

  13. Davidson D. W. (1973) in ref. 1 115–234.

    Google Scholar 

  14. Eagland D. (1975) in ref. 1, 4, 305–518.

    CAS  Google Scholar 

  15. Franks F. and Eagland D. (1975) Crit. Rev. Biochem. 3, 165.

    Article  CAS  Google Scholar 

  16. Pain R. H. (1979) in ref. 2, 19–36.

    Google Scholar 

  17. Finney J. L. (1982) in Biophysics of Water (Franks F. and Mathias S. F., eds.) John Wiley & Son, Chichester, pp. 55–57.

    Google Scholar 

  18. Chan D. Y., Mithcell D. J., Ninham B. W., and Pailthorpe B. A. (1979) in ref. 1, 6, 239–278.

    CAS  Google Scholar 

  19. Privalov P. L. and Gill S. J. (1989) Adv. Protein Chem. 39, 19–234.

    Google Scholar 

  20. Tanford C. (1973) The Hydrophobic Effect. John Wiley & Sons, New York.

    Google Scholar 

  21. Okazaki S., Nakanishi K., and Touhara H. (1983) J. Chem. Phys. 78, 454.

    Article  CAS  Google Scholar 

  22. Dec S. F. and Gill S. J. (1985) J. Solution Chem. 14, 417.

    Article  CAS  Google Scholar 

  23. Eisenberg D., Weiss R. M, Terwilliger T. C, and Wilcox W. (1982) Faraday Symp. Chem. Soc. 17, 109.

    Article  Google Scholar 

  24. Nozaki Y. and Tanford C. (1971) J. Biol. Chem. 246, 2211.

    PubMed  CAS  Google Scholar 

  25. Bigelow C. C. (1967) J. Theor. Biol. 16, 187.

    Article  PubMed  CAS  Google Scholar 

  26. Nord L., Tucker E. E., and Christian S. D. (1983) J. Solution Chem. 12, 889.

    Article  CAS  Google Scholar 

  27. Franks F. and Pedley M. D. (1983) J. Chem. Soc. Faraday Trans I 79, 2249.

    Article  CAS  Google Scholar 

  28. Lee B. and Richards F. M. (1971) J. Mol. Biol. 55, 379.

    Article  PubMed  CAS  Google Scholar 

  29. Shrake A. and Rupley J. A. (1973) J. Mol. Biol. 79, 351.

    Article  PubMed  CAS  Google Scholar 

  30. Savage H. F. J. (1986) Water Sci. Rev. 2, 67–148.

    Google Scholar 

  31. Drenth J., Jansonius J. N., Koekoek R., and Wolthers B. G. (1971) Adv. Protein Chem. 25, 79.

    Article  PubMed  CAS  Google Scholar 

  32. Berendsen H. J. C. (1975) in ref. 1, 5, 293–330.

    CAS  Google Scholar 

  33. Ramachandran G. N. and Chandrasekharan R. (1968) Biopolymers 6, 1649.

    Article  PubMed  CAS  Google Scholar 

  34. Chapman G. E., Danyluk S. S., and McLauchlan K. A. (1971) Proc. Roy. Soc. B 178, 465.

    Google Scholar 

  35. Birktoft J. J. and Blow D. M. (1972) J. Mol. Biol. 68, 187.

    Article  PubMed  CAS  Google Scholar 

  36. Vovelle F., Goodfellow J. M., Savage H. F. J., Barnes P., and Finney J. L. (1985) Eur. Biophys. J. 11, 225–237.

    Article  CAS  Google Scholar 

  37. Teeter M. M. and Kossiakoff A. A. (1984) in Neutrons in Biology (Schoenborn B. P., ed.), Plenum, New York, p. 335.

    Google Scholar 

  38. Packer K. W. (1977) Phil. Trans. Roy. Soc. Ser. B. 278, 59–86.

    Article  CAS  Google Scholar 

  39. Derbyshire W. (1982) in ref. 1, 7, 339–430.

    CAS  Google Scholar 

  40. Bryant R. G. and Halle B. (1982) in ref. 1 7, 389–393.

    Google Scholar 

  41. Kuntz I. D. and Kauzmann W. (1974) Adv. Protein Sci. 28, 239–255.

    Article  CAS  Google Scholar 

  42. Cooke R. and Kuntz I. D. (1974) Ann. Rev. Biophys. Bioeng. 3, 95–126.

    Article  CAS  Google Scholar 

  43. Clegg J. S. (1982) Mathias S. F., eds.) John Wiley & Son, Chichester in ref. 17, 365–383.

    Google Scholar 

  44. Ling G. N. and Negendank W. (1980) Persp. Biol. Med. 24, 215.

    Google Scholar 

  45. Privalov P. L. and Mrevlishvili G. M. (1967) Biofizika 12, 22.

    PubMed  CAS  Google Scholar 

  46. Kuntz I. D. (1971) J. Amer. Chem. Soc. 93, 516.

    Article  CAS  Google Scholar 

  47. McCabe V. C. and Fisher H. F. (1970) J. Phys. Chem. 74, 2990.

    Article  CAS  Google Scholar 

  48. Pysh E. S. (1974) Biopolymers 13, 1557.

    Article  PubMed  CAS  Google Scholar 

  49. Franks F. (1991) Trends in Food Sci. Technol. 2, 68–72.

    Article  Google Scholar 

  50. Ross H. K. (1954) Ind. Eng. Chem. 46, 601–610.

    Article  CAS  Google Scholar 

  51. Rupley J. A., Gratton E., and Careri G. (1983) Trends Biochem. Sci. 8, 18–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 The Humana Press Inc

About this protocol

Cite this protocol

Franks, F. (1993). Protein Hydration. In: Franks, F. (eds) Protein Biotechnology. Biological Methods. Humana Press. https://doi.org/10.1007/978-1-59259-438-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-438-2_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-230-9

  • Online ISBN: 978-1-59259-438-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics